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Abstract 

Riparian areas are a complex component of stream ecosystems and provide critical 

habitat for Pacific salmon (Oncorhynchus spp.).  Comprehensive techniques are needed for 

assessing riparian areas that can be used on small and large regional scales.  I examined the 

application of airborne LiDAR and high resolution multi-spectral imagery from the World View-

2 (WV-2) satellite to analyze riparian landcover and riparian forest structure in the Nooksack 

River Watershed.   I employed an object-oriented approach to segment the imagery into 

meaningful objects consisting of groups of pixels.  I examined the advantages of the four 

additional spectral bands from the 8-Band World View-2 Image compared to the traditional four 

spectral bands provided from conventional high resolution multi-spectral imagery. Using the 

Random Forest algorithm, I developed classification and regression models to predict the features 

of interest across the study area.   

The classification results from the 8-Band WV-2 image were improved over the 

traditional 4-Band WV-2 image that is comparable to other high resolution sensors such as 

IKONOS and Quickbird. Analyzing the combined LiDAR and 8-Band WV-2 spectral data 

improved the results for landcover classification but did not improve the results for riparian forest 

structural predictions. However, the results generated from the LiDAR only image was 

comparable to the 8-Band WV-2 spectral imagery at classifying forest classes and remarkably 

better at predicting forest structure data. The overall results indicate that classification of forested 

cover type and structural properties of riparian forest stands can be determined accurately for 

relatively large study areas with LiDAR-based approaches.  From the final LiDAR image output, 

I applied the models to categorize the riparian forest based on forest class, size, and density to 

show one application of the results generated in this study.  The categorized map provides a tool 

to prioritize restoration and preservation needs within the riparian forest landscape in the 

Nooksack River Basin study area.   
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1.0 Introduction 

The degradation of freshwater habitat has contributed to the decline of anadromous 

Pacific salmonids (Oncorhynchus spp.) (Nehlsen et al. 1991; Beechie and Bolton 1999; Rot et al. 

2000).  Because riparian areas directly influence instream freshwater habitat, restoration and 

preservation efforts in the Pacific Northwest have focused extensively on riparian areas and the 

aquatic habitat they support (Naiman and Latterell 2005).   

A well-functioning riparian area provides many services to the aquatic habitat.   Large 

woody debris (LWD) recruitment is a critical function of riparian areas.  Trees, large branches, 

and root wads that fall into a stream create refuge pools for salmon that allow them to forage for 

food, save energy, and gain protection from predators (Beechie and Sibley 1997).  The pools also 

serve as thermal refuges in streams with elevated temperatures. The combination of LWD and 

vegetation along the stream edge provides stream bank stabilization and protects soils from 

surface erosion (Gregory et al. 1991; Naiman et al. 2005).   Decreased erosion helps to reduce the 

amount of fine sediment in the channel which can clog salmonid spawning gravel reducing 

aeration of buried eggs and ultimately leads to decreased survival of eggs.  Riparian vegetation 

also provides shade that maintains low stream temperatures vital for salmonids (Beschta et al. 

1987; Gregory et al. 1991).   Riparian vegetation can filter pollutants such as sediments, nutrients, 

road salt, and agricultural chemicals from upland areas that enter into the stream habitat (Duncan 

et al. 1987).  The recruitment of particulate organic matter (POM) is another important function 

riparian zones provide (Naiman et al. 2000).  Detrital organic matter such as leaves, cones, and 

needle litter are food sources for aquatic and terrestrial consumers important to aquatic food 

chains (Gregory et al. 1991).  An intact riparian floodplain forest provides dynamic channel and 

floodplain interaction, which creates critical off-channel habitat for juvenile salmonids (Sommer 

et al. 2001; Fullerton et al. 2006). Riparian areas also provide critical wildlife habitat for aquatic 

habitat modifiers such as beaver and many other terrestrial predators or scavengers associated 
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with salmonid populations (Gregory et al. 1991; Naiman et al. 1998).  This study focuses on 

developing remote sensing methods for describing the conditions of riparian forests.  

1.1 Research Objectives 

Anthropogenic influences on riparian habitat have compromised the function of the 

existing riparian habitat thus limiting suitable fish habitat.   LWD recruitment and shade are two 

important contributions to stream habitat that functioning riparian forests provide to the adjacent 

stream segment.  In particular, large conifers are key characteristics of a mature riparian forest 

because they can provide both functional LWD and shade.  Characterizing riparian habitat into 

landcover classes is important for discriminating between forested and non-forested areas and 

specifically isolating conifer forest from deciduous forest.  A deciduous dominated forest does 

not provide LWD of the size that is needed to function in most Pacific Northwest streams and 

decays more rapidly than conifer species (Latterell and Naiman 2005, Naiman et al. 2005). The 

ability to identify riparian forest structural attributes is important for assessing LWD and shade 

potential because it will give an indication of the tree size and developmental stage.  In many 

stream reaches, extensive restoration is needed to recover these features.  Other stream reaches 

may have functioning riparian habitat or are on a pathway to recovering functioning conditions.  

Identification of high quality riparian habitat is critical for prioritizing areas for preservation or 

assessing restoration efforts. Analysis of riparian areas with LiDAR and advanced multi-spectral 

imagery has the potential to provide a rapid, objective, and cost-effective tool to assist in 

prioritizing locations for riparian preservation and restoration efforts.   
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The objectives of this study are to: 

 

 Evaluate the potential of LiDAR and multispectral imagery for assessing riparian forest 

condition 

o Specifically, evaluate LiDAR and WorldView-2 multispectral imagery for: 

i. Classification of riparian landcover classes 

ii. Predicting riparian forest structural attributes 

 

 Generate a map of riparian forest condition based on the riparian landcover classification 

and riparian forest structural attributes that are relevant to LWD recruitment and shade 

potential. 

 

1.2 Study Area 

The study area is a subset of the Nooksack River Watershed in the Water Resources 

Inventory Area 01 (WRIA 01) in northwestern Washington (Figure 1).  The Nooksack River runs 

through two hydrologic provinces, the steep uplands originating on the western slopes of the 

Cascades which cut through bedrock, and the lowlands which pass through glacial and 

interglacial sediments and alluvium at a much lower gradient (USGS 2002).  The lower elevation 

areas are part of the Puget Sound lowlands.  In the upland area east of Deming, WA, the river 

system is composed of three forks: the North Fork, Middle Fork, and the South Fork of the 

Nooksack River.  After passing through Deming, the reaches converge to form the mainstem 

Nooksack River, which then flows through the lowlands before entering Bellingham Bay in the 

Puget Sound (USGS 2002).   The study area specifically includes the lower South Fork Nooksack 

River and the associated tributaries and a portion of the upper mainstem Nooksack River and the 

associated tributaries.   
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Figure 1. Nooksack River Basin study area with extent of available imagery areas. 

 

Historically, Native Americans used the basin for subsistence fishing, hunting, and 

gathering.  In the late 1800s, European settlers began to harvest timber in the uplands and cleared 

land in the lowlands to farm (Maudlin et al. 2002).  Currently, the study area includes a mixture 

of rural-agriculture (53%), commercial forestland (28%), federal forestland (10%), urban-UGA 

zone (4%), and Lummi Indian Reservation (2%) (Hyatt 2000).   

The study area was selected due to the presence of anadromous and resident fish 

populations that have been classified as “threatened” under federal law and a “candidate” species 

under state law (NMFS 2013; WDFW 2013), the diversity of upland and lowland habitat, and the 

diversity of land use practices along riparian zones.  The South Fork Nooksack River supports all 

five North American species of Pacific salmon: chinook (Oncorhynchus tshawytscha); chum 
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(Oncorhynchus keta); coho (Oncorhynchus kisutch); pink (Oncorhynchus gorbuscha); sockeye 

(Oncorhynchus nerka); as well as steelhead (Oncorhynchus mykiss), bull trout (Salvelinus 

confluentus), and sea-run cutthroat (Oncorhynchus clarkii); (WRIA 01SRB 2005).  The South 

Fork Nooksack River is the focus of the study because of the threatened status of the Spring 

Chinook populations in the river.  Threatened native summer-run and winter-run steelhead and 

bull trout also utilize this fork of the river.  South Fork Nooksack Chinook are close to 

extirpation, with only a few dozen adults returning annually.  To recover this and other species, 

there are intensive restoration efforts underway to restore habitat and habitat-forming processes 

and to protect high quality areas along the South Fork Nooksack.  Elevated stream temperatures 

in the South Fork are considered to be a key factor that is limiting recovery of the Chinook 

population, and this especially affects adults holding in the river during the summer months 

(WRIA 01 SRB 2005).  Threatened adult summer steelhead and bull trout also migrate up-river in 

the summer, and are also likely affected by the elevated temperatures.  The Mainstem Nooksack 

was chosen because it has the combined influence of all forks of the Nooksack River, and it is the 

first segment salmon and trout populations travel through in their anadromous journey back from 

marine waters.   

Riparian areas in this system were historically dominated by red alder (Alnus rubra), black 

cottonwood (Populus trichocarpa), Sitka spruce (Picea sitchensis), and western red cedar (Thuja 

plicata) (Collins and Sheikh 2004).  In the lower watershed and delta, red alder was the most 

common riparian tree, but Sitka spruce was the only large-diameter tree and by far the dominant 

conifer by basal area.  In the upper Nooksack and forks, alder was the most common tree and 

cedar the largest streamside tree.  Present day riparian forest conditions are dominated primarily 

by deciduous species such as alder and cottonwood (Hyatt et al. 2004).  Recent surveys of LWD 

in the South Fork Nooksack documented few key logs and stable log jams (NNR 2008).  Historic 

records indicate the rivers contained extensive amounts of large woody debris, primarily sitka 

spruce in the delta, black cottonwood in the lower Nooksack, cedar in the upper Nooksack 
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followed by spruce, fir and cottonwood, and in the forks, cedar and fir followed by cottonwood 

and big leaf maple (Acer macrophyllum) (Collins and Sheikh 2004). 

2.0 Background 

2.1 Riparian Forests 

Logging, agriculture, urban development and many other anthropogenic factors have 

dramatically altered riparian areas in the Pacific Northwest, causing a sharp decline in their 

ability to provide terrestrial and aquatic habitat (Duncan et al. 1987; Beechie and Sibley 1997).  

Until the 1980s there were limited restrictions on timber harvest activity in the riparian zone, and 

forests were logged to the streams edge.  For this reason, the legacy of past harvest activity is still 

apparent. Currently riparian forests are often dominated by deciduous species such as red alder 

which are important components of the riparian regime but do not typically provide large enough 

or decay resistant LWD to the stream (Mikkelson 2001; Compton et al. 2003; Volk et al. 2003; 

Gergel et al. 2007; Mollot et al. 2007).  This change in species composition, size and stem 

densities post-harvest has caused the reduction in coniferous woody debris of sufficient size to 

provide instream habitat (Beechie and Sibley 1997; Bilby and Bisson 1998; Hyatt et al. 2004; 

Mollot et al. 2007). The reduction of LWD in streams can degrade instream habitat by increasing 

sediment loads, increasing water temperatures, and decreasing channel complexity leading to 

channel incision (Bilby and Ward 1989; Kreutzweiser and Capell 2001; Steiger et al. 2001; 

Kiffney et al. 2003; Fullerton et al. 2006).  Alterations to riparian forests have reduced the inputs 

of LWD to streams, but historical management practices also involved the active removal of 

LWD from stream channels.    Up until the 1950s splash dams were used to transport logs, which 

also reduced the amount of wood in streams (Wendler and Deschamps 1955; Bilby and Ward 

1991).  A splash dam is a temporary dam made from wood that was built in the stream adjacent to 

a harvest operation.  The buildup of water allowed more logs to be transported downstream when 

the dam was released, but also flushed any existing large woody debris from the stream and 
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scoured the stream channel corridor. As recently as the late 1980s, instream wood –both naturally 

occurring and logging debris-- was also actively removed for navigation and, at the time, as a 

perceived improvement to upstream access for anadromous fish (Sedell and Luchessa 1982; Bilby 

1984; Bisson et al. 1987; Bilby and Ward 1991).  However, the negative impacts of this wood 

removal are now widely recognized.   

The loss of an active channel migration zone through bank armoring and levees has also 

dramatically decreased the recruitment of LWD to streams and rivers (WRIA 1SRB 2006).  

These flood protection measures were instituted to protect infrastructure and agriculture in 

floodplains but at the time did not integrate with fish habitat needs.  A floodplain that is well 

connected to the active channel provides multiple functions for the river-floodplain ecosystem, 

such as off-channel habitat for salmonids, attenuation of high flows, reduction of sediment loads, 

and recruitment of LWD (Naiman et al. 1998).  Reconnection of rivers to their associated 

floodplains is a way to restore natural river process which makes the system more resilient to 

future changes by allowing the system to make necessary physical and biological adjustments 

(Beechie et al. 2010). As river management progresses into the 21
st
 century, balancing the 

recovery of ESA-listed salmon species while protecting infrastructure is a controversial and 

challenging issue.    

Washington Forest Practice Rules under Title 222-30 WAC were enacted in 2001 to 

establish riparian buffers to decrease active logging in the riparian zone (WADNR 2010). The 

width of these buffers zones and restrictions within them vary based on the sensitivity of the 

associated stream reach (WADNR 2010).  However, having only been in place for approximately 

10 years, there are still legacy effects of past harvest practices within the riparian zone.   

A mature riparian forest is comparable to an old growth forest and is composed of large, 

living and dead trees; massive fallen logs; a multi-layered canopy with openings; and a diverse 

understory (Naiman et al. 2000; Bigley and Deisenhofer 2006).  Compared to other successional 

stages, a mature riparian forest has greater amounts of horizontal and vertical variation (Alaback 



 

8 

 

1982a; 1982b; Naiman et al. 1998).  A well-functioning riparian zone exhibits many features of 

an old growth forest (Naiman et al. 2005).  The Washington State Department of Natural 

Resources (WADNR) habitat conservation plan (HCP) for managing state owned forested land 

dictates management for structurally complex riparian forest that are assumed to be at a fully 

functional development stage or equivalent to the ecological definition of old growth forest 

conditions (Bigley and Deisenhofer 2006). Functional riparian habitat is characterized by three 

main elements, large conifer trees, a complex stand structure, and long-lived tree species 

composition to provide stability to stream banks, channels, and floodplains (Bigley and 

Deisenhofer 2006). Large conifers over time are recruited to the stream providing stable LWD 

that in turn modifies the channel to provide critical salmon spawning, rearing, holding, and over-

wintering habitat.  Shade is also directly provided by large conifers in the riparian zone. Due to 

the mosaic of site conditions near streams, the riparian forest exhibits diverse stand structure with 

canopy gaps and patches of variably spaced trees throughout the stands (Bigley and Deisenhofer 

2006).  

Historically, mature riparian forests in the Pacific Northwest included not just a wide, 

almost continuous corridor of mature trees but also off-channel wetlands and complex floodplain 

areas (Naiman et al. 1998).  The trees species in the riparian forest were primarily conifers but 

there were also patches of alder and willow in areas of recent disturbance and a mosaic of dense, 

diverse understory species (Gregory et al. 1991; Naiman et al. 1998).    

Historically, the lower Nooksack River maintained extensive wetlands, multiple 

channels, sloughs, and forested islands (Collins and Sheikh 2004).  The riparian forest was 

dominated by red alder, western red cedar, Sitka spruce, and black cottonwood (Collins and 

Sheikh 2004).   The intact riparian forest provided large wood to the Nooksack River with 

geographic variability in species contribution, 
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“Wood jams were historically abundant and had a variety of geomorphic and habitat 

functions in the Nooksack.  The GLO bearing tree data indicate species that would have 

contributed very large wood that could potentially function as key pieces in jams.  Sitka 

spruce was the sole source on the delta; black cottonwood would have augmented spruce 

in the lower Nooksack; in the upper Nooksack cedar would have been the most common, 

and secondarily spruce, fir and cottonwood.  In the forks, primarily cedar and fir and 

secondarily cottonwood and maple would have commonly provided very large wood.” 

(Collins and Sheikh 2004). 

 

Large amounts of wood in the Nooksack riverine environment would have caused a dynamic 

channel pattern characterized by frequent avulsion.  However, due to the frequency of large stable 

log jams acting as hard points for vegetation to remain, there would have been a patchwork, 

mosaic forest across the active channel migration zone (Maudlin et al. 2002). 

2.2 LWD Function 

LWD enters the streams when riparian trees fall or when trees are transported from 

upstream or the adjacent riparian forest.  Delivery of trees to the stream can be through biological 

processes such as tree mortality due to insect and disease or by physical processes such as wind 

throw and undercutting of root systems by the aquatic environment (Bisson et al. 1987).  LWD 

recruitment can occur more frequently at smaller scales of a single tree falling in the river and 

also at less frequent but larger scales that deliver a large number of trees to the river at one time 

(Bilby and Ward 1989).  The greater episodic events contribute large pulses of wood that are 

usually caused by tree mortality driven by epidemic scale insect infestations and disease, 

landslides, avalanches, large-scale patches of blow down, and bank erosion caused by high flows 

(Bisson et al. 1987; Naiman et al. 2000).  While input processes vary based on tree species 

composition, soil stability, valley form, climate, lateral channel mobility, and streamside 

management history, the density of streamside trees is positively correlated with LWD amounts 

in some systems (Bisson et al. 1987; Long 1987; Bilby and Ward 1989).  Studies comparing the 

recruitment of trees from a second growth riparian forest in which large trees have been 

previously harvested show the inputs are greatly reduced compared to old growth riparian stands 

(Bisson et al. 1987). 
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The persistence of LWD in the fluvial system is a function of the wood size and species 

recruited from the riparian forest (Naiman et al. 2000).  The amount, characteristics, and function 

of LWD differ with stream size (Bilby and Ward 1989; Hyatt et al. 2004).  Riparian derived 

LWD interacts with the geomorphology and hydrology of the associated fluvial system exerting a 

strong influence on channel morphology and as a result the composition of the adjacent riparian 

forest (Fetherston et al. 1995; Abbe and Montgomery 1996; Naiman et al. 2000; Bailan and 

Naiman 2005).  Debris jams formed by LWD exert localized control on channel hydraulics and 

can provide stable locations for vegetation to withstand flood scour.  These protected locations 

allow riparian succession to progress for decades and in some cases centuries in a riverine 

environment where rapid channel migration can cause frequent disturbance (Bisson et al. 1987; 

Fetherston et al. 1995).  LWD in the aquatic environment acts as refuge for aquatic invertebrates 

and fish species from high flows and predation.  The logs function to form associated scour pools 

and deepen existing pools.   The logs also provide locations for sediment and organic matter to 

build up and increase the channel roughness and complexity (Bilby and Bisson 1998; Naiman, et 

al. 2000).   

2.3 Shade Function  

Stream temperature is influenced by multiple factors such as direct solar radiation, 

ambient air temperature, groundwater inputs, hyporheic exchange, humidity, and elevation 

(Brown 1969; Brown and Krygier 1970).  High water temperatures can be detrimental to all life 

stages of salmonids and can affect multiple factors such as disease resistance, timing of life 

history events, egg survival, and more (Spence et al. 1996; WRIA 01 2005). The dominant source 

of heat to streams comes from direct solar radiation (Johnson 2004; Naiman et al. 2005).  

Riparian forests can dictate the amount and duration of direct solar radiation reaching an adjacent 

stream. Canopy density, canopy height, stream channel width, and orientation of the channel in 

relation to the path of the sun also influence stream temperature (Naiman et al. 2005).  Riparian 



 

11 

 

vegetation can also indirectly influence stream temperature by altering the stream micro-climate 

variables such as air temperature, humidity, and wind speed (Rutherford et al. 1997).  The micro-

climate then affects evaporation, conduction, ground temperature, and water temperature.   

During the summer when solar radiation levels are highest due to higher sun angles, 

longer periods of daylight, clear skies and the discharge of the stream is low, the interception of 

solar radiation by riparian canopies is critical (Beschta et al.1987).  The exposed surface area of a 

stream segment and stream discharge determines the degree to which solar radiation increases the 

water temperature (Sheridan and Bloom 1975; Beschta et al. 1987).  For example a stream with a 

large exposed surface area and a low discharge will have higher temperature increases. Several 

studies have observed increases in stream temperature immediately downstream of removal of 

riparian forests (Brown 1969; Brown and Krygier 1970; Brazier and Brown 1973).   

2.4 Riparian Assessment 

Riparian areas extend through land under multiple jurisdictions with diverse land use 

practices.  For this reason, many different groups and agencies are involved in the management of 

riparian areas. Riparian area assessment is a critical component in predicting salmon habitat 

quality because riparian areas directly influence instream freshwater habitat (Naiman and 

Latterell 2005; Fullerton et al. 2006). Riparian structure, composition, and succession vary 

substantially based on spatial variability in elevation and slope, and as a result there is fine-

grained spatial variability in responses to regional disturbance regimes (Mollot and Bilby 2008). 

Ground-based surveys combined with aerial photos or Landsat imagery with a pixel size of 30 

meters have been the main methods for riparian zone inventory by forested land managers and 

habitat biologists.   Ground-based techniques are labor intensive and expensive for regional 

application.  Aerial photos and Landsat imagery do not capture the diversity of riparian zone 

features in enough detail.    Conducting a field based survey campaign of the entire riparian forest 

is typically logistically impractical and the current methods for extrapolating the conditions to 
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areas not sampled may not capture the heterogeneity of the riparian forest and also require 

extensive time and labor to digitize aerial photographs. There is potential to improve the 

methodology for riparian forest inventory by developing an efficient fine-grained assessment 

method that can effectively survey narrow, complex riparian forest.  

In riparian forest assessment, similar to traditional forestry assessments, it is common to 

use one forest metric as a predictor of another forest metric because forest stand structural, 

functional, and compositional attributes are often highly correlated (Franklin et al. 2002; 

Bormann et al. 2006).  Forest structure can be defined by a diverse set of variables such as: 

number of canopy strata, canopy cover, tree diameter, tree height, spacing, abundance (basal area 

and volume), species, understory vegetation (richness, height, total cover), and dead wood 

components (Bormann et al. 2006).  Spies and Franklin (1991) found that mean diameter at breast 

height (DBH), standard deviation of DBH, tree density, and density of trees greater than 100 cm 

are strongly correlated with mature forest structural stage in the Pacific Northwest.  Later work 

found that the quantity and size of canopy gaps are also important features of old growth stands 

(Spies 1998; Van Pelt and Franklin 2000).   

2.5 Restoration Strategies 

Two main strategies for improving salmon habitat occur in the Pacific Northwest, 

introducing conifer trees into riparian stands and introducing large wood into the stream itself. 

Large wood designed to mimic naturally occurring logjams, is the most common strategy for 

introducing large wood to the stream.  In the Nooksack River Watershed alone there have been 

over 100 ELJ structures installed in the North Fork and South Fork Nooksack combined (Maudlin 

and Coe 2012).   

The strategy of planting conifers in hardwood stands is low cost compared to the addition 

of wood to the aquatic environment but requires a longer time frame to achieve the habitat 

benefits. The main objective of conifer introduction is to provide a future source of large logs and 
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shade for the stream (Mollot and Bilby 2008).   The majority of wood introduced to the channel 

from the adjacent riparian forest is produced within 50 m of the channel edge (Murphy and Koski 

1989; McDade et al. 1990; Mollot and Bilby 2008). 

2.6 Image Assessment 

 

Multiple efforts are underway to develop new forest assessment methods using LiDAR, 

satellite imagery, and also combinations of LiDAR and satellite imagery. There is potential to 

apply these newer remote sensing methodologies to riparian forests as well.  Classification of 

remotely sensed data for forest assessment can be divided into two approaches: pixel based and 

object based. Pixel based is the traditional method of image analysis based on a per pixel 

classification.  Object-based image analysis (OBIA) is an emerging analysis method for image 

classification based on segmenting the image into groups of adjoining pixels that are referred to 

as “objects.”      The objects are defined based on spectral similarities among adjoining pixels and 

other analyst-determined constraints such as object shape, size, and texture (Campbell and Wynne 

2011).  Objects then become the carriers of image information derived from the underlying pixels 

(Chubey et al. 2006).    An advantage to OBIA is that the segmentation process aggregates 

individual pixels of the forest stand into one image object that combines the spectral response of 

all of the included pixels.  The image objects are then used in subsequent analyses (Chubey et al. 

2006).   OBIA is an attempt to reconcile digital imagery, with a pixel size of perhaps 1 to 4 m, 

with forest inventory data for stands or individual trees (Hall 2003).  This is particularly useful 

when evaluating heterogeneous riparian areas. 

2.6.1 LiDAR 

Airborne LiDAR or Light Detection and Ranging is a relatively new technology that is 

becoming more widely available to natural resource practitioners.   LiDAR is primarily used for 

terrain mapping (Reutebuch et al. 2003) but is also becoming more commonly used in forest 

management as an important tool for vegetation assessment (Sullivan et al. 2009). LiDAR data 
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can provide high-resolution topographic maps and also accurate estimates of vegetation height, 

cover, and canopy structure. The benefit of using LiDAR sensors is the ability to sample a three-

dimensional distribution of plant canopy components as well as sub-canopy topography 

(Bormann et al. 2006).   

The relationship between LiDAR-derived height and cover measurements and traditional 

field measurements of canopy structure is well understood.  This approach is referred to as area 

level metrics (ALM) (Bormann et al. 2006). LiDAR data has been used to measure crown height 

(Means et al. 1999; Næsset and Bjerknes 2001; Næsset  2004; Andersen et al. 2006), measure 

crown height and length (Næsset and Økland 2002), mean DBH (Lefsky et al. 1999; Kane et al. 

2010a), variation in tree diameter (Lefsky et al. 1999; Kane et al. 2010a), basal area (Lefsky et al. 

1999; Means et al. 1999; Næsset 2004; Goerndt et al. 2010), above ground biomass (Lefsky et al. 

1999; Means et al. 1999; Lefsky et al. 2002; Lefsky et al. 2005a), cover (Means et al. 1999, Kane 

et al. 2010a), stem count (Næsset and Bjerknes 2001; Næsset  2004), density (Goerndt et al. 2010; 

Kane et al. 2010a) and fuel loads (Andersen et al. 2005).  The metrics are most often related via 

regression, non-parametric and discriminate analysis (Hyyppä et al. 2008).  Three categories of 

LiDAR metrics, mean height of LiDAR returns, variation in height such as standard deviation of 

LiDAR returns, and canopy closure were found to correlate with field measurements of forest 

structure when used in combination with each other (Lefsky et al. 2005a; Kane et al. 2010a) 

The use of individual-tree level LiDAR metrics (ITM) has been documented as well, but 

is not as common (Brandtberg et al. 2003; Holmgren et al. 2003; Holmgren and Persson 2004; 

Popescu 2007; Yu et al. 2011).  Individual tree height, location and crown size can be derived for 

individual-tree level metrics from the canopy height point clouds and pixels of canopy height 

models.  Identification of species from LiDAR data is also being developed using both LiDAR 

elevation and intensity points (Holmgren and Persson 2004). 

LiDAR metrics have been incorporated into object-based analysis of forest stands 

(Pascual et al. 2008; Sullivan 2009).  Pascual et al. (2008) used OBIA to characterize Pinus 
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sylvestris stands using LiDAR data.  They first defined forest stands in eCognition, software that 

specializes in OBIA, with a digital canopy layer derived from the LiDAR data and then used 

cluster analysis (k-means) to separate the different forest types.  The best predictors of forest 

structure were median and standard deviation of height.    

2.6.2 Multi-spectral Imagery 

 

There are many satellites that provide multi-spectral data for image analysis.  Several 

satellites, QuickBird, IKONOS, Spot 4 and 5, Orbview-3, and WorldView-2 can acquire multi-

spectral imagery at spatial resolutions below 4 m and panchromatic data at less than 1 m pixel 

resolutions.   The sensors carried by IKONOS and Quickbird have three spectral bands in the 

visible spectrum, 0.45 to 0.70 µm and one in the near infrared, 0.76 to 0.85 µm.  The IKONOS 

sensor provides a spatial resolution of 4 m for the four multispectral bands listed in Table 1 and 1 

m for the panchromatic band. Spot 5 also has a band in the mid-infrared, 1.58 to 1.75µm.  

WorldView-2 is a relatively new satellite launched in 2009 and the only satellite that currently 

has eight spectral bands.  The satellite provides a spatial resolution of 0.5 m on the panchromatic 

band and 2 m on the eight multispectral bands (Table 1).  In addition to the four standard spectral 

bands (blue, green, red, and near infrared) carried by other satellites, Worldview-2 carries four 

additional spectral bands, (coastal blue, yellow, red edge, and near IR2) (Table1).   The new 

Yellow, Red-Edge and the second near-IR bands provided by the WorldView-2 sensor should 

increase the capacity to differentiate between conifer and deciduous trees (Digital Globe 2010).  
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Table 1. Band comparison for World View-2 and IKONOS.   

WorldView-2 - IKONOS 

Band Name 
Band 

# 

Wavelength 

Interval (µm) 
Band # 

Wavelength 

Interval (µm) 

Coastal 1 0.40-0.45 - - 

Blue 2 0.45-0.51 1 0.45-0.52 

Green 3 0.51-0.58 2 0.51-0.60 

Yellow 4 0.59-0.63 - - 

Red 5 0.63-0.69 3 0.63-0.70 

Red Edge 6 0.71-0.75 - - 

NIR-1 7 0.77-0.79 4 0.76-0.85 

NIR-2 8 0.86-1.04 - - 

 

 

High resolution satellite imagery has been used in forest assessments with assorted 

mapping objectives,  such as the mapping of invasive species (Everitt et al. 2008), merchantable 

timber, fire fuels (Mutlu et al. 2008), riparian species (Johansen and Phinn 2006; Johansen et al. 

2007; Gergel et al. 2007), and old growth tropical rainforests (Clark et al. 2004).  QuickBird 

imagery has been used recently to measure riparian vegetation with high levels of accuracy 

(Johansen and Phinn 2006; Gergel et al. 2007; Johansen et al. 2007).  Johansen and Phinn (2006) 

used QuickBird satellite imagery to analyze the structural attributes of savanna riparian zones in 

northern Australia, such as canopy gaps, foliage clumping, tree crowns, stand density, and 

vegetation communities.  Johansen et al. (2007) used QuickBird imagery to classify riparian 

vegetation on Vancouver Island, British Columbia  They used a combination of spectral, 

vegetation and texture bands in an object-oriented image classification to classify vegetation 

structural stages with accuracies of 78.95%.  Gergel et al. (2007) used QuickBird imagery to 

classify riparian forest structure classes using OBIA as well with accuracies ranging from 70 to 

90%.  Hyperspectral imagery has also been used to classify riparian forests using a supervised 

classification method with an overall accuracy of approximately 80% (Mollot et al. 2007).  
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In Costa Rica Clark et al. (2004) used IKONOS imagery to map old growth forests, tree 

crown location and growth for large trees.  Stand basal area, estimated above ground biomass, 

and percentage of the canopy 15 m tall were significantly correlated with indices derived from 

IKONOS data.  Chubey et al. (2006) used multi-resolution segmentation in eCognition to 

segment an IKONOS image to extract the forest inventory parameters: species, height, and crown 

closure, and stand age.  Radoux and Defourny (2007) compared IKONOS imagery and Spot-5 

imagery to delineate forest stands using multi-resolution segmentation in eCognition.   

Recent studies have used WorldView-2 imagery for forestry applications (Borel 2010; 

Omar 2010; Sridharan 2010; Wolf 2010).  Sridharan (2010) used the WorldView-2 imagery to 

map urban forests in Texas with classification accuracies of 62-64% at the species level for up to 

40 tree species and accuracies of greater than 91% at the landcover level.  Omar (2010) mapped 

tree species in Malaysia using WorldView-2 imagery with an overall accuracy of 90% using the 

random forest classification technique.  Another study used textural and spectral indices extracted 

from WorldView-2 data to estimate plot-level basal area, volume, mean height and mean DBH in 

New South Wales, Australia (Shamsoddini et al. 2010).  They found better results for mean 

height and DBH compared with volume and basal area.  The red edge, yellow and NIR2 bands 

performed well in combination for estimation of biophysical parameters.  Chávez and Clevers 

(2010) used object-based analysis to segment a WorldView-2 image into individual trees and then 

apply three vegetation indices to quantify tree health.  Chen (2010) compared WorldView-2 

imagery and IKONOS-2 imagery for tree identification in Hawaii.  He tested three types of 

classifications at the pixel and object level: discriminant analysis, support vector machine, and 

random forest.  Comparing the four comparable bands that both satellites share (blue, green, red, 

and NIR) he found the WorldView-2 image achieved higher accuracies than the IKONOS image 

at the pixel and object level, 6 % and 13% higher, respectively.  Chen found the four new 

WorldView-2 bands (coastal, yellow, red-edge, and NIR2) were among the top bands for 

classifying tree species at the pixel level. Ozdemir and Karnieli (2010) used correlation analysis 
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to predict forest structural parameters from texture indices derived from WorldView-2 imagery in 

dryland forest in Israel.  They looked at number of trees, basal area, stem volume, Clark-Evans 

index, diameter differentiation index, contagion index, Gini coefficient, and standard deviation of 

breast heights.  Basal area, standard deviation of diameter at breast heights, and Gini coefficient 

were the best fitting models. Multi-spectral imagery has been useful at characterizing tree species 

and structure. This study examines the potential of multi-spectral imagery for characterizing 

riparian landcover and structural attributes.  It is also examines the capacity of the additional four 

bands provided by the 8-Band WV-2 image for this purpose.   At this time there are no studies 

that have examined the role of the additional spectral bands from the 8-Band WV-2 image for 

riparian forest assessment in the Pacific Northwest. 

2.6.3 Data Fusion 

Many studies use a combination of imagery to increase accuracy of forest classification.  

There are several studies that have fused LiDAR with aerial photography, multispectral or 

hyperspectral imagery (Popescu et al. 2004; Lefsky et al. 2005b; Geerling et al. 2007; Packalen 

and Maltamo 2007; Secrest 2007; Voss and Sugumaran 2008; Anderson et al. 2009; Arroyo et al. 

2010; Jones et al. 2010).  Lefsky et al. (2005b) combined SLICER-derived LiDAR estimates of 

stand height and above ground biomass and Landsat estimates of stand age to estimate above 

ground net primary production of wood (NPPAw).  Packalen and Maltamo (2007) used a 

combination of LiDAR and aerial images to predict species specific plot-level tree volumes.  

Anderson et al. 2009 conducted an image analysis of ombrotrophic peatlands in the United 

Kingdom using both LiDAR and IKONOS imagery. They calculated the following textural data 

products from a LiDAR dataset at the same 4-m resolution as accompanying IKONOS imagery: 

minimum and maximum land surface height, and variance and semi-variance calculated from 

semi-variogram analysis of land surface height. They achieved an accuracy of 72% for peatland 

landcover classes using IKONOS data only and increased accuracy levels to 88% when the 
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LiDAR semi-variance product was used. The LiDAR minimum and maximum local heights and 

variance product also increased accuracies compared to just using IKONOS imagery, 86% and 83 

%, respectively.  

A study by Hudak et al. (2006) integrated canopy height, LiDAR return intensity, and 

canopy metrics derived from LiDAR and Advanced Land Imager (ALI) spectral data to predict 

basal area and tree density using stepwise regression in conifer-dominated forests in northern 

Idaho.  The LiDAR variables proved much more valuable than the ALI variables for predicting 

the structural variables.  They found LiDAR height variables predicted basal area best followed 

by LiDAR intensity.  Tree density was predicted based by LiDAR canopy cover variables and 

then also LiDAR intensity.  Overall they explained ~90% of variance in basal area and tree 

density.  Voss and Sugumaran (2008) used hyperspectral data from Airborne Imaging 

Spectrometer for Applications (AISA) and LiDAR to classify seven tree species in Cedar Falls, 

Iowa, USA using an object-oriented approach.  Adding LiDAR height information to the 

classification increased the accuracies by 19% for both seasons.  In a study classifying floodplain 

vegetation in the Netherlands, Geerling et al. (2007) used Compact Airborne Spectrographic 

Imagery (CASI) data combined with LiDAR.  They implemented an object-based multi-

resolution segmentation followed by a supervised classification.  Using the LiDAR data alone 

their classification accuracy was only 41%.  The CASI data performed better with an accuracy of 

74%.  After fusing the two datasets, the accuracy was increased to 81%.  Arroyo et al. (2010) 

fused LiDAR data with QuickBird imagery to map riparian biophysical parameters and land 

cover types: plant projective cover (PPC) or groundcover, riparian vegetation, woodlands, 

rangelands, bare ground, streambed, streambed width, riparian zone width, and overhanging 

vegetation.  They used OBIA to analyze the data and achieved an overall accuracy of 86%.   

The fusion of LiDAR and multi-spectral imagery provides improved results based on previous 

work from the unique advantages that each dataset brings to the analysis.  I would expect the 
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fusion of LiDAR and multi-spectral imagery to be the most useful for characterizing riparian 

landcover and forest structural attributes. 

3.0 Materials and Methods 

3.1 Materials: Data sources 

There are four main types of data used in this analysis: LiDAR, multi-spectral satellite 

imagery, field or ground truth vegetation data, and GIS data.   

3.1.1 LiDAR 

The 2006 USGS LiDAR dataset was part of a regional LiDAR survey campaign covering 

1735 square miles of western Whatcom and Skagit counties contracted by U.S. Geological 

Survey (USGS; Sanborn 2008; Figure 1).  The data were acquired in May, 2006 (Table 2).  Two 

platforms, the Leica ALS-50 (Airborne Laser Terrain Mapping) and the Optech 2050 LiDAR 

systems, were used to collect the data.  The two platforms have comparable specifications.  The 

LiDAR data was processed by the vendor to obtain first and last return point data.  The last return 

was further filtered to yield a LiDAR surface representing the bare earth.  The vendor also 

provided a first return point data DEM in ArcInfo Grid File Format, a bare earth point data DEM 

in both an ArcInfo Grid File Format and ASCII xyz file format, and all return data in ASCII text 

file format and las format. 

The data acquisition was an experiment by the USGS in collecting LiDAR data over a 

large area for a low cost.  The final product did not meet the task order specifications for 

completeness or accuracy and did not meet the specifications for vertical accuracy (Haugerud 

2008). The incomplete areas and sparse return areas are beyond the boundaries of the study area 

for this project.  The errors associated with the decreased vertical accuracy within the dataset 

made mapping the ground surface challenging; however, because this study evaluates the LiDAR 

point cloud in relation to the last return on the surface, absolute vertical accuracy was not a 

critical issue.  
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Table 2. LiDAR specifications for USGS 2006 LiDAR dataset. 

 

Data source Specifications 

date May 11, 2006 

vendor Sanborn 

Leaf on or off on 

Area (km
2
) 5096 

Pixel size (m) 1.83 

Accuracy (cm) 

18.5- 37 RMSE (vertical) 

100 (horizontal) 

Scan angle (
o
) - hm +- or total 36-40 (half angle) 

Flying height above ground level (AGL)  1200-1500 (m) 

Scan pulse rate (kHz) 50-60 

Scan width (m) NA 

Sampling density all returns (points/m
2
) 1.3-1.4 

Sampling density all returns (points/m
2
)

1
 2.58 

Sampling density first returns (points/m
2
)

1
 1.36 

1
within the sample plots in this study  

 

 

The 2006 LiDAR dataset has an overall all returns point density of 1.3-1.4 points/m
2
 

(Table 2).  Within the sample plots, the average all returns point density was higher, 2.58 

points/m
2
.  The first return point density was closer to the overall average at 1.36 points/m

2
.  A 

top down view of a small portion of the maximum tree height layer can be seen in Figure 2b. An 

example of the distribution of the first returns points for one of the sample plots as viewed in the 

Forest Service Software FUSION Version 3.30 can be seen in Figure 3 (McGaughey 2013).   
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Figure 2. Imagery sources: (a) Visible bands (5, 3, 2; RGB) from 8-band World View-2 

September 29, 2010; (b) LiDAR 2006 tree height layer, May 11, 2006.   

 

 

  

 

Figure 3. Example of First Returns height above the ground data points in ft. for Plot POBLB 

(76) displayed over the bare earth ground layer. Point density 1.28 points/m
2
, Total points 1174.   

(a) (b) 
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3.1.2 WorldView-2 

One high resolution World View-2 eight band image was obtained on September 29, 

2010.  This is considered a leaf-on time period although some of the deciduous trees were 

beginning to senesce by this date. The World View -2 image covers an area centered on the lower 

South Fork Nooksack River, approximately river mile 7.7 to 16.5 (Figure 1).  The image was 

delivered with the multispectral bands separate from the panchromatic band and was divided into 

eight tiles. A close up of the visible bands from the World View-2 imagery can be seen in Figure 

2a. 

3.1.3 GIS data 

A summary of the GIS data used in the analysis is listed in Table 3. The hydrology data 

and watershed boundaries data were provided by the Northwest Indian Fisheries Commission 

(NWIFC 2008).  Anadromous fish usage includes both current and historical/potential 

distribution (NNR 2004).  I digitized the active channel boundaries directly from the 2010 

WorldView-2 Image.  The riparian condition zone and channel migration zone were delineated 

from aerial photo interpretation from aerial photos from both 1991 and 1995 (Coe 2001).  

Table 3. GIS data, date and source of data. 

Data description Source 

Stream Gradient (SSHIAPP
1
) NWIFC 2008

2
 

Anadromous fish usage NNR 2004 

Active Channel South Fork Nooksack digitized from WV-2 Image 

Riparian vegetation (RCU)
3
  Coe 2001 

Channel Migration Zone NNR 2001 

Watershed boundaries (SSHIAPP) NWIFC 2008 
1
SSHIAPP – Salmon and Steelhead Stock Inventory Assessment Program 

2
NWIFC – Northwest Indian Fisheries Commission 

3
RCU - Riparian Condition Units based on aerial photo interpretation 

 

3.1.4 Field data 

Field sites were identified through a stratified random sampling scheme developed from 

existing landcover datasets, fish distribution data, stream gradient information, and riparian 



 

24 

 

vegetation from a previous assessment (Table 3).  The sites were distributed throughout the study 

area and were selected to sample a full range of riparian forest composition and structural 

attributes adjacent to anadromous fish habitat within the study area.  The plots were limited to 

anadromous fish-bearing streams and adjacent stream segments with gradients less than 20%.  To 

restrict the study area to the riparian zone, I used a buffer width of 300 ft. from the stream edge or 

active channel.  While buffer regulations vary among streams, I chose a buffer of 300 ft. that 

represents the target buffer distance for riparian reserves as recommended by the Forest 

Ecosystem Management Assessment Team (FEMAT 1993).  The 300-ft. buffer distance is greater 

than most regulated buffers; however, to fully assess the riparian forest I wanted to include a 

riparian buffer that was somewhat larger than the regulated buffer.  Also, the larger buffer 

compensates for some of the inaccuracies in the GIS stream layer. 

 The World View-2 data were acquired later in the project as grant funding became 

available and, due to funding constraints, do not cover the full spatial extent of the 2006 LiDAR 

dataset.  As a result, there are fewer field plots within the area covered by the World View-2 

imagery.  There are 63 field plots in the LiDAR data area and 22 in the World View-2 study area 

(Figure 1). Field data were collected during summer and fall 2008 and 2009 and three additional 

plots were collected in 2010 to augment the World View-2 imagery dataset which was acquired 

in 2010.    

From each randomly generated point I ran a transect perpendicular to the stream segment 

that was 10 m wide and extended 60 m into the riparian zone (0.06 ha).  In a few instances the 

perpendicular distance was extended beyond 60 m if there was a distinct break in the forest from 

a road or harvest operation beyond 60 m but less than 100 m. The locations of the four plot 

corners were determined with a Trimble Pro XT differential GPS receiver.   At all plots, I was 

able to obtain coordinates for a minimum of one plot corner. When dense forest cover precluded 

obtaining coordinates for all four plot corners, I calculated the coordinates for the other corners 

using distance and bearing from the one location. The data were post-processed using Trimble 
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Pathfinder software to establish horizontal accuracies of ≤ 2 m.  Within each transect tree species 

composition, diameter at breast height (DBH), and distance to stream was measured for all 

standing trees greater than 10 cm DBH. For dead trees, the mortality agent and decay class 

adapted from Maser et al. (1988) were recorded. However, mortality agent proved difficult to 

determine and most often was recorded as unknown.  

All live trees ≥ 10 cm DBH were included in the analysis.  For each field plot I calculated 

summary statistics and derived basal area and stem density metrics from the DBH measurements 

and stem counts. Washington Department of Natural Resources (DNR) Timber Fish and Wildlife 

(TFW) riparian forest methodology includes measuring live and dead trees because standing dead 

trees have high potential for contributing wood to the stream (WADNR 1996).  However, 

quantifying dead trees from LiDAR and multispectral imagery is beyond the scope of this project, 

although dead tree data were collected at field sites.  

Ideally, the image and field data would have been acquired simultaneously, but logistics 

did not allow this.  An analysis of potential factors affecting riparian vegetation in the time 

interval between image and field data acquisition showed that the derivation of relationships 

between the data sets is still possible.  However, one field plot that was sampled in 2008 was 

dropped from the analysis due to harvest in the plot in 2010.  

3.2 Methods  

The general workflow for data analysis was: (1) preprocessing of raw LiDAR data to 

create plot level metrics; (2) pre-processing of raw LiDAR data to create seven raster grids 

describing LiDAR height and density metrics which can be used for input into image 

segmentation; (3) pre-processing of 8-Band WV-2 image to prepare image for input into image 

segmentation; (4) segmentation of different image datasets; (5) evaluation of the use of different 

combinations of  segmented images to predict both categorical (land cover classes) and 
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continuous (forest structure attributes) response variables; (7) mapping of riparian forest using 

best classification methods. 

3.2.1 Image pre-processing 

3.2.1.1 LiDAR 

I conducted a preliminary exploratory analysis of relationships between metrics derived 

from the LiDAR first returns data and the field metrics to validate using a subset of the LiDAR 

metrics for the image segmentation and classification component of this project. Key stand 

structural attributes derived from field data were: maximum DBH, mean DBH, standard deviation 

(SD) of DBH, maximum basal area, mean basal area, SD basal area, plot basal area , stem 

density, and stem density of trees with DBH > 50cm (Table 4).  Instead of using the metric of 

trees > 100 cm DBH as in Kane et al. (2010a), the metric of trees > 50 cm DBH was used because 

it applies to riparian forest size classes (WFPB 1997).  Trees > 50 cm DBH are categorized in the 

large size class for riparian forest classification (WFPB 1997).  The choice of field metrics was 

based on metrics that are commonly used to describe forest complexity and specifically riparian 

forest complexity (Spies and Franklin 1991; Naiman et al. 2005).  The choice of LiDAR metrics 

used in this analysis was based on a literature review of LiDAR applications in forestry and then 

applied to the context of riparian forest.  Lefsky et al. (2005a) found that a combination of three 

LiDAR metrics (mean height of LiDAR returns, SD of height of LiDAR returns, and canopy 

closure) closely correlate with field measurements of structural attributes. Each of the three 

LiDAR metrics relate to a different element of stand structure: 1) biomass (height measurement), 

2) canopy structural complexity (variability in height), and 3) canopy gaps and leaf area index 

(LAI) (Lefsky et al. 2005a; Kane et al. 2010a; Kane et al. 2010b). In order to fully cover the three 

broad categories of LiDAR metrics described by Lefsky et al. (2005a), I used seven LiDAR 

metrics: maximum height, mean height, 95
th
 percentile of height, SD height, CV of height, 

rumple (described below), and cover (Table 4).  I included three LiDAR metrics representing 
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height (maximum height, mean height, and 95
th
 percentile height) and three metrics of canopy 

structural complexity or variability in height (SD height, CV of height and rumple) to explore 

differences in performance of the metrics.  All LiDAR metrics were extracted from the raw first-

return point data using the LiDAR software FUSION (McGaughey 2012).  The LiDAR data are 

projected in State Plane coordinate system with units in feet; however, all units are reported in 

metric units.   

Table 4. Field and LiDAR metrics. 

Field Metric Description 

DBH SD (cm) Variation in size 

DBH mean (cm) Average size 

DBH max (cm) Maximum size 

Plot Basal area (m
2
/ha) Size of trees adjusted for plot area 

Stem density (trees/ha) Density or cover 

Density of trees DBH ≥ 50 cm 

(trees/ha) Density of large trees with high riparian function 

LiDAR Metric  Description 

Height maximum (ft.) Maximum height of first returns above the ground surface; 

The highest point in canopy, sensitive to outliers. 

Height mean (ft.) Mean height of first returns; An average height but is 

sensitive to outliers. 

Height 95th Percentile 95th percentile height of first returns; Refers to the height 

where 95% of the LiDAR returns fall below. Metric is a 

representation of maximum heights and is less sensitive to 

outliers. 

Height SD (ft.) Standard deviation of first return heights; Sensitive to 

vertical variation in canopy structure. 

Height CV Coefficient of Variation first return heights; Sensitive to 

vertical variation in canopy structure relative to mean 

heights.  

Cover Canopy cover; Proportion of first returns greater than a 

lower height limit of 3.05m (10 ft.) above ground.  Height 

limit is used to eliminate returns from herbaceous and 

shrub cover.  

Rumple The ratio of 3-D canopy surface model area to ground area. 

Sensitive to vertical and horizontal variation in canopy 

structure (Kane et al. 2010a). 

 

 



 

28 

 

I calculated the LiDAR metrics using first returns elevation data at the plot level for the 

10 m x 60 m field plots and not at the individual tree level. I calculated all LiDAR metrics using 

the US Forest Service FUSION software package (McGaughey 2013).  

I used the vendor-provided bare earth digital elevation model (DEM) tiles to produce a 

mosaicked digital terrain model (DTM) in FUSION.  The DTM is then used as the ground surface 

for generating other LiDAR metrics from the first returns point data in FUSION.  The output of 

this tool is a raster in GeoTiff format with pixel size of 1.83 m (6 ft.).  Because I was interested in 

the height difference between the bare earth and the vegetation points, it was acceptable to use the 

vendor provided bare earth tiles to create a DTM rather than generating a bare earth model from 

the all returns point data. Previous studies have had success using the vendor provided DTM 

(Næsset 2004; Pascual et al. 2008).  

I extracted the first returns LiDAR data points located within the associated field data 

plot from the raw LiDAR all returns las file provided from the vendor using FUSION.   I then 

calculated a full suite of LiDAR metrics from the clipped data using the CLOUDMETRICS tool 

(McGaughey 2013).  I used CLOUDMETRICS to generate a csv table with all LiDAR metrics 

for each plot which I then used in the correlation analysis with the field data plots.  A more 

detailed description of data processing in FUSION can be found in Appendix A. 

In FUSION, canopy cover is defined as the percentage of returns (first returns or all 

returns) over a specified height threshold (McGaughey 2013).  Overstory canopy cover is 

typically defined as any vegetation greater than the height break of 3 meters above ground. For 

example, if 21 LiDAR pulses enter the canopy and 16 first returns are recorded above the 3-m 

height threshold, then the LiDAR-based cover estimate would be computed as 76% (Figure 4).  

The Cover function in FUSION estimates canopy cover using a grid with output values form 0.0 

to 100.0 percent.  I calculated cover as the percentage of first returns above 3.05 m (10 ft.) out of 

the total number of first returns for each plot.  A height threshold of 3.05 m was chosen because it 

eliminates understory vegetation typically encountered in the study area (McGaughey 2013).  
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Figure 4. Example cover measurements in FUSION (McGaughey 2013). 

The Rumple index is the ratio of 3-D canopy surface model area to ground area.  It is a 

sum of 3-D area of triangles formed by canopy surface model grid points divided by the 2-D area 

of grid cell surface (Kane et al. 2010a).  The Rumple index is another way to quantify canopy 

structural complexity and can qualify variation that might not be apparent when looking only at 

standard deviation (Figure 5).  In both artificial canopy surface models in Figure 5, half of the 

points are at a height of 50 m and half are at 100 m (from Kane et al. 2010a).  The higher the 

rumple index is the more heterogeneous the three-dimensional vertical and horizontal 

heterogeneity is.  To calculate Rumple, I first generated canopy surface models (CSM) for each 

plot by subtracting the ground return elevations from the first return elevations.  Rumple is then 

calculated by dividing the surface area of the CSM by the ground area.   

   

Figure 5. Rumple example.  Comparison of two artificial canopy surfaces with comparable 

descriptive height metrics but different rumple indexes (Kane et al. 2010a). 

 

3m 

 Surface A Surface B 

Rumple 1.4 14.2 

95% height 100 100 

Mean height 75 75 

SD height 25 25 
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Figure 6. Data flow diagram describing the combination of field observations, LiDAR, Multispectral Imagery, and Aerial Photos used in data 

analysis.
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All LiDAR metrics were calculated in FUSION (Figure 6).  LiDAR and field metrics were 

compared using the Kendall’s tau correlation coefficients.  Kendall’s tau correlation coefficient was 

chosen due to non-normality and heteroscedasticity within multiple variables.  Kendall’s correlation 

operates with ranks of the measurements for each variable.  

For the following image segmentation and classification, I generated seven raster grids from 

the LiDAR first return elevation points in FUSION: Maximum Height, Mean Height, the 95
th
 

Percentile of Height, Standard Deviation Height, Coefficient of Variation of Height, Cover, and 

Rumple.  A grid cell size of 3.66 m (12 ft.) was used to capture enough data points per grid (~10 

points/grid cell) but still retain adequate detail to relate to field plots which were 10 m x 60-100 m. 

The raster grids were imported into ArcGIS for additional processing before importing into 

eCognition (Definiens 2010). ECognition is the software used for image segmentation described 

below. The grids were projected to the same coordinate system as the WorldView-2 Imagery (WGS 

1984 UTM Zone 10). At the 3.66 m resolution there were still locations, primarily water, with no 

returns for the LiDAR data.  I used a conditional equation in ArcGIS to interpolate data in the no-data 

locations for all seven grids because the summary statistics calculated in eCognition would not ignore 

the no-data values.  Finally, I clipped the raster grids to correspond to the WorldView-2 image tiles, 

resulting in eight tiles for each of the raster grids.  A detailed data flow diagram is included in 

Appendix A. 
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3.2.1.2 WorldView-2 pre-processing 

The LiDAR went through multiple pre-processing steps as described in the previous section.  

The WorldView-2 image was provided by the Digital Globe as eight separate tiles. The WorldView-2 

image underwent radiometric correction on the raw data by the vendor to reduce visible banding and 

streaking.  The image also underwent orthorectification by the vendor. I pan-sharpened the 2-m 

resolution WorldView -2 multispectral bands with the 0.5 m resolution panchromatic band using the 

Gram-Schmidt method in ENVI (Figure 7).  In order to evaluate the influence of additional four 

bands that the WV-2 image provided, I also examined the WV-2 image isolating the four 

conventional bands, Blue (2), Green (3), Red (5), and NIR-1 (7) (Table 2).  This did not require any 

pre-processing or creating a separate image because the different image bands of the entire 8-Band 

WV-2 image can be included or excluded on a band by band basis in the image segmentation 

software.  I refer to the 4-Band dataset as an image (4-Band WV-2 image) to make the comparisons 

between datasets simpler even though it is not technically a separate image. 

   

Figure 7. WV-2 image pan-sharpening. From left to right: visible WV-2 bands 2-m resolution; 

Panchromatic WV-2 band, 0.5-m resolution; and Pan-sharpened visible WV-2 bands, 0.5-m 

resolution. 

3.2.2 Image Segmentation 

 

The imagery was classified using an object-based classification technique with the 

eCognition V 8.0 software (Definiens 2010).  The objectives of the segmentation phase were to 

generate meaningful objects that would support: 1) delineation of landcover classes within the 

riparian zone, and 2) prediction of riparian forest structure metrics within field plots. Four sets of data 

were individually segmented: 1) the 4-Band WV-2 image including only the Blue, Green, Red, and 
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NIR-1 bands that correspond to the four conventional spectral bands of other high spatial resolution 

satellites such as IKONOS, 2) the 8-Band WV-2 image including the four conventional bands (Blue, 

Green, Red and NIR-1) plus the four additional bands (Coastal, Yellow,  Red-Edge, and NIR-2), 3) 

LiDAR metrics alone, and 4) WV-2 image with all 8 bands and the LiDAR metrics. For predicting 

landcover classes I compared the use of four segmentation inputs: (1) 4-Band WV-2 Image, (2) 8-

Band WV-2 Image, (3) LiDAR data metrics, and (4) 8-Band WV-2 Image combined with the LiDAR 

metrics data.    For predicting riparian forest structure metrics within field plots, I compared the use of 

three out of the four segmentation results: 1) WV-2 image all 8 bands, 2) the seven LiDAR grids 

alone, and 3) WV-2 image all eight bands with the seven LiDAR grids. 

Within eCognition, there are multiple image segmentation algorithms.  I used the multi-

resolution segmentation process to generate meaningful objects from the four datasets.  The image 

layers were first imported into eCognition, creating a layer stack of spectral bands and LiDAR 

metrics that can be used in the analysis.  The LiDAR datasets were resampled, using nearest neighbor, 

to the 0.5-m pixel size of the pan-sharpened WV-2 imagery upon input into eCognition.  I also added 

three shapefiles: 1) the WorldView-2 image boundary, 2) a 300 ft. riparian buffer, and 3) field plot 

boundaries. I used an image pre-processing step known as a chessboard segmentation that 

incorporated the WV-2 image boundary and the riparian buffer to constrain the subsequent multi-

resolution segmentation for the landcover classification to the riparian zone and also eliminate issues 

associated with the image border. Once the analysis zone was isolated I ran the multi-resolution 

segmentation algorithm.   

 I used all three shapefiles to constrain unit of observation for the subsequent regression 

analysis of the riparian forest structure variables to just the field plots. I did not run the multi-

resolution segmentation on the field plots but instead exported the spectral and LiDAR metric 

statistics for each plot from eCognition to incorporate into the regression analysis of riparian forest 

structure statistics with the field plots. I then applied the model results of RF regression analysis to 

the objects from the above mentioned segmentation process that were developed for the entire study 
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area. .  The segmentation divides an image into multi-pixel objects based on similarities in user-

defined parameters affecting size, spectral homogeneity, spatial homogeneity, and shape of output 

objects (Chubey et al. 2006).    The input parameters for the segmentation algorithm consist of the 

scale parameter, the shape parameter and the compactness parameter.  The scale parameter creates a 

threshold of how much heterogeneity is retained in an object based on the spectral and/or LiDAR 

metric inputs but is not prescriptive of size of an object.  However, a larger scale parameter value 

allows greater variance within objects, which usually creates larger objects.  To find the appropriate 

object size, I examined different scale parameters, ranging from 15 to 300, as inputs to the multi-

resolution segmentation algorithm. Both the shape and compactness parameters range from 0 to 1.  

For all segmentations algorithms I used a shape parameter of 0.3 and a compactness parameter of 0.5 

after trying a suite of values. If the shape parameter is too high, the spectral information and/or 

LiDAR metric information will be ignored.  Specific weights can be assigned to different bands as 

part of the segmentation settings.  I assigned all bands a weight of 1, except the NIR-1 band, which 

was weighted as 2.  The NIR portion of the EM spectrum is closely associated with the ability to 

discriminate changes in vegetation (Campbell and Wynne 2011).  I only weighted the NIR-1 band in 

order to compare the results between the full 8-Band WV-2 image and the segmentation limited to the 

4-Band WV-2 image. I weighted the NIR-1 band as 2 is in the 4-Band WV-2, 8-Band WV-2, and the 

combined LiDAR and 8-Band WV-2 image segmentation processes.  I segmented the image in the 

eight tiles that corresponded to the image tiles provided by the vendor due to computer processing 

limitations when attempting to segment the entire image (20,216 x 20,216 pixels = 102 km
2
).  The 

results were mosaicked together into one image after all segmentation processing was complete.    

I calculated summary statistics for each image object and each input band or metric in 

eCognition (Table 5).  The number of metrics ranged from 12 for the 4-Band WV-2 Image to 29 for 

the combined LiDAR and WorldView-2 Image Analysis.  For each input band or layer, the mean and 

standard deviation of the pixel values (spectral data and/or LiDAR metrics) within each object was 

exported.  Mean of the band or layer refers to the mean value of all pixels within an object (e.g., 
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Mean RED is the mean value of the red band of all pixels within an object.).  The standard deviation 

features were also derived from the analysis of all pixels included in each object.  The standard 

deviation serves as an estimation of the level of variability within each object.  The mean brightness 

index for each object was also exported.  The brightness index calculates the mean intensity value of 

all spectral bands within the object.  To examine object size and shape, I exported the object area, 

object length/width ratio, and compactness.  Compactness for each object is calculated as the product 

of the length and the width, divided by the number of pixels in the object. The export output for each 

tile is a raster tif and an associated csv file that contain the specified object statistics. These two files 

are the inputs for the image classification (described below). I also exported a shapefile of object 

boundaries to examine in ArcMap. 

To export the metrics isolated to the field plots, I exported the spectral band metrics and/or 

LiDAR metrics but restricted them to the boundaries of the field plots.  The output was a csv file with 

the unique plot id identifying the data that I combined with the field metrics associated for each plot. 

This product is the input for the following Random Forest Regression analysis.  
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Table 5. Object statistics calculated for each object based on the segmentation inputs.  See text for 

description of each metric. 

Metric 

Number  
Metrics  

Metrics 

from WV-2  

- 8 Bands 

Metrics 

from WV-2  

- 4 Bands 

Metrics 

from 

WV-2 

and 

LiDAR 

Metrics 

from 

LiDAR 

1 Mean Band 1 x 

 
x 

 2 Mean Band 2 x x x 

 3 Mean Band 3 x x x 

 4 Mean Band 4 x 

 

x 

 5 Mean Band 5 x x x 

 6 Mean Band 6 x 

 

x 

 7 Mean Band 7 x x x 

 8 Mean Band 8 x 

 

x 

 9 SD Band 1 x 

 

x 

 10 SD Band 2 x x x 

 11 SD Band 3 x x x 

 12 SD Band 4 x 

 

x 

 13 SD Band 5 x x x 

 14 SD Band 6 x 

 

x 

 15 SD Band 7 x x x 

 16 SD Band 8 x 

 

x 

 17 Area x x x x 

18 Length/Width x x x x 

19 Compactness x x x x 

20 Brightness Index x x x 

 21 Mean Max Height 

  
x x 

22 Mean Mean Height 

  
x x 

23 Mean 95th % Height 

  
x x 

24 Mean Cover 

  
x x 

25 Mean Rumple 

  
x x 

26 SD Max Height 

  
x x 

27 SD Mean Height 

  
x x 

28 SD 95th Height 

  
x x 

29 SD Cover 

  
x x 

 

3.2.3 Image Classification  

After image segmentation, I classified image objects, using multi-spectral and/or LiDAR 

derived information (Table 5), into the following landcover types: Water, Gravel bar, Pasture, 
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Developed, Deciduous, Conifer, and Roads.  In order to classify the image I mosaicked the eight 

eCognition output rasters into one image. I also merged the eight original csv outputs into one csv 

that corresponded with the mosaicked raster.  The final merged csv and mosaicked raster are the 

inputs for the classification process. 

Prior to image segmentation, I generated a dataset of training and testing data that represented 

the seven different landcover types used in the image classification.  The primary goal of the 

landcover classification was to distinguish between conifer and deciduous riparian trees.  The five 

additional classes represent broad non-forested landcover types found in the riparian buffer. I used a 

combination of Pictometry imagery from 2008 and 2010, 2006 NAIP imagery, and the WV-2 image 

to digitize the training and testing data within the riparian buffer.  I identified a minimum of 100 

samples for each class with the exception of the “developed” class which consisted mostly of man-

made structures in the riparian zone (Table 6).  It was difficult to identify additional “developed” 

training points because the proportion of developed structures in the study area is minimal compared 

to the other landcover classes. The training and testing points were stored in a shapefile with the 

associated Class ID in the attribute table. 

Table 6. Distribution of training and testing data among landcover classes. 

Number 

of 

Classes Class 

Number of 

samples in 

each class 

1 Water 152 

2 Gravel Bar 102 

3 Pasture 199 

4 Developed 42 

5 Deciduous 227 

6 Conifer 230 

7 Road 109 

 

I used the Random Forests (RF) algorithm (Breiman 2001) to both classify the landcover 

types and predict forest structure metrics in the field plots.  RF operates similarly to classification and 

regression trees (CART) (Hudak et al. 2008).  RF can operate as a classification algorithm and a 
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regression algorithm depending on the response variable being categorical or continuous (Breiman 

2001).    It is referred to as RF classification when the response variable is categorical.  When the 

response variable is continuous the algorithm is referred to as RF regression.  The RF algorithm 

randomly subsets the training data to estimate a large number of classification trees.  The trees are 

split based on a random subset of the predictor variables (Breiman 2001; Martinuzzi et al. 2009). 

After running the iterations, (100s to >1000s), the predictions are combined using a rule of majority 

votes (Martinuzzi et al. 2009).   By generating multiple trees compared to a single classification tree, 

the RF algorithm typically achieves higher accuracies (Breiman 2001).  Another advantage to the RF 

algorithm is that it is nonparametric making it unaffected by distributional assumptions (Breiman 

2001; Cutler et al. 2007). Two main metrics of error are output from the model that differs slightly 

depending on the RF algorithm operating via classification or regression.  For RF classification, the 

Out of Bag error estimate (OOB) is an overall error measure describing the proportion of times the 

result is not accurate over all samples (Breiman 2001; Horning 2011).  For classification, a confusion 

matrix is also generated describing the class error.  For regression, the “percent variance explained” is 

given which is also referred to as a pseudo R-squared value (Horning 2011).  For both RF 

classification and RF regression an estimate of variable importance is given indicating the amount of 

influence that one variable has over another.  In RF classification it is referred to as the Mean 

Decrease in Gini (MSG) or the Gini index and in RF regression it is referred to as Percent Increase in 

Mean Squared Error (MSE; Breiman 2001; Cutler et al. 2007; Hudak et al. 2008).  The Gini index is 

described by Hudak et al. (2008) as,   

“a measure of node impurity, or the degree to which a variable produces terminal nodes in the 

forest of classification trees.   Splitting a node on a variable causes the Gini index for the two 

descendant nodes to be less than the parent node.  Summing these decreases in the Gini index 

for a variable across the forest of classification trees provides a measure of variable 

importance (Breiman et al. 2001).” 

 

For RF regression the Percent Increase in MSE is measured by the degree to which the 

inclusion of a variable decreases the mean squared error (Liaw & Wiener 2002).  I used the RF 

package (Breiman et al. 2012) in R (www.r-project.org; R Development Core Team 2013) to run the 

http://www.r-project.org/
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RF regression algorithm to predict riparian forest structure.  The RF regression analysis builds a 

predictive model using the spectral and/or LiDAR metrics as the predictor variables and the field 

measured riparian forest structure metrics as the response variables.  The predictive model is then 

applied to the image objects classified by the RF classification algorithm as conifer and deciduous to 

create a predicted map of riparian forest structure.  I ran the analysis separately for each of the six 

field-measured riparian forest structure metrics but with all of the predictor variables included in each 

run. I then generated a final map of riparian forest condition based on the classification and regression 

predictions to be used for restoration and conservation prioritization.  

4.0 Results 

4.1 Field Summary 

The majority of trees in the field plots were in the smallest size class, between 10 cm and 30 

cm (Table 7).  The most common tree species were red alder, followed by western hemlock (Tsuga 

heterophylla), western red cedar, and Douglas fir (Pseudotsuga menziesii) (Figure 8).   Additional 

species located in the field plots were: big leaf maple, cascara (Rhamnus purshiana), paper birch 

(Betula papyrifera), vine maple (Acer circinatum), and willow species (Salix spp.). Western red cedar 

had the greatest basal area overall, followed closely by red alder and Douglas fir (Figure 9).  The 

average DBH of trees was 29.86 cm for all sites and 30.59 cm for the WV-2 sites.  The field plots 

exhibited a range of riparian vegetation (Figure 10).  A summary of all field plots and associated 

LiDAR metrics is included in Appendix B. 
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Table 7. Summary statistics for live trees in all field plots.  Deciduous dominated: >70 percent 

deciduous species; Conifer dominated: >70 percent conifer dominated species; Mixed: neither 

deciduous or conifer dominated.  

Variable 

Conifer 

dominated 

LiDAR 

(n=17) 

Deciduous 

dominated 

LiDAR 

(n=21) 

Mixed 

LiDAR 

(n=25) 

All 

LiDAR 

sites 

(n=63) 

All WV-2 

sites 

(n =22) 

Minimum DBH (cm) 10.00 10.00 10.00 10.00 10.00 

Maximum DBH (cm) 116.40 141.00 213.50 213.50 153.20 

SD DBH (cm) 17.38 17.17 20.88 19.11 19.67 

Average DBH (cm) 32.00 25.46 30.99 29.86 30.59 

Average basal area (m
2
/ha) 62.73 33.92 54.06 49.69 49.53 

Stem density (trees/ha) 540.09 406.51 502.24 482.93 491.95 

Stem density 10 ≤ DBH < 30 cm 

(trees/ha) 
283.77 299.96 306.12 298.12 289.38 

Stem density 30 ≤DBH < 50 cm 

(trees/ha) 
181.05 71.63 134.51 127.73 140.00 

Stem density DBH ≥  50 cm (trees/ha) 75.27 34.92 61.62 57.08 61.63 

Total stem count (# trees)  531 454 758 1743 733 
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Figure 8. Stem density of live trees for all 63 LiDAR field plots by tree species for major species. 

Major species had greater than 10 individuals counted in all plots. 

 

Figure 9. Total basal area (m
2
/ha) of live trees for all 63 LiDAR field plots by tree species for major 

species.  Major species had greater than 10 individuals counted in all plots. 
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Figure 10. Examples of field plots: a) narrow buffer dominated by reed canary grass, alder and 

cottonwood (Plot #58); b) young alder dominated (Plot #42); c) second growth cedar and hemlock 

dominated (Plot #29); d) second growth hemlock dominated with regenerating hemlock understory 

(Plot #22). 

 

4.2 Correlations between LiDAR and field based forest metrics 

There was a significant correlation between most field and LiDAR metrics (Table 8).  The 

LiDAR height metrics, with the exception of CV of height, were correlated with field metrics for size, 

DBH and Basal area.  The LiDAR height metrics were not correlated with Stem density of all trees 

but were correlated with Stem density of trees ≥ 50 cm DBH.  Mean height had lower correlation 

coefficients for most field metrics but had the highest overall correlation coefficient with Basal area, 

tau = 0.48.  SD height and Rumple correlated with all six field metrics.  SD height had the strongest 

correlation with SD DBH and SD Basal area.  Rumple also had the highest correlation mean DBH 

 

 

 

a) b) 

d) c) 
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followed by Stem density trees ≥ 50 cm, tau = 0.34 and tau = 0.31 respectively.  Rumple was 

negatively correlated with Stem density, tau = -0.21.  Cover and CV of height did not correlate with 

the three DBH metrics but did correlate with Basal area.  CV of height negatively correlated with 

Basal area plot and Stem density.  Conversely cover was positively correlated with Basal area plot 

and Stem density. 

 Field metric SD DBH was strongly correlated with Maximum height, tau = 0.39, 95
th
 

percentile height, tau = 0.42, and SD height, tau = 0.35 (Table 8).   Mean DBH was correlated with 

Maximum height, tau = 0.42, and 95
th
 percentile height, tau = 0.43.  Maximum DBH had the 

strongest correlation with Maximum height, tau = 0.45, followed by 95
th
 Percentile Height, tau = 

0.40.  Basal area had the strongest correlation with Mean height, closely followed by 95
th
 Percentile 

height, and then maximum height.  Stem density was negatively correlated with SD height, CV 

height, and Rumple but positively correlated with Cover.  Stem density of trees ≥ 50 cm had the 

strongest correlation with Maximum height closely followed by the 95
th
 percentile height, tau = 0.41 

and tau = 0.39 respectively.  Stem density of trees ≥ 50 cm DBH was also correlated with Maximum 

height, Mean height, SD height and Rumple but not with cover.  
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Table 8. Kendall’s tau values for correlations of LiDAR metrics with field metrics.  Significant correlations only, p ≤ 0.05.  (n=63). *p<0.05, 

**p≤0.001. 

 

 

LiDAR Metrics 

Field Metrics 

Maximum 

Height 

(ft.) 

Mean 

Height (ft.) 

SD
1
 Height 

(ft.) 

CV
2
 

Height 

95th 

Percentile 

Height 

Cover (%) Rumple 

SD DBH (cm) 0.39** 0.19* 0.35** 

 
0.36** 

 
0.28** 

Mean DBH (cm) 0.42** 0.32** 0.33** 

 
0.43** 

 
0.34** 

Maximum DBH (cm) 0.45** 0.28** 0.28** 

 
0.40** 

 
0.23** 

Basal Area Plot (m
2
/ha) 0.44** 0.48** 0.18* -0.24* 0.47** 0.28** 0.20* 

Stem Density (trees/ha) 

  

-0.30** -0.38** 
 

0.38** -0.21* 

Stem Density DBH ≥ 

50cm (trees/ha) 0.41** 0.27* 0.27* 

 
0.39** 

 
0.31** 

1
SD: Standard deviation 

2
CV: Coefficient of Variation 
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4.3 Image Segmentation 

In order to compare the four datasets I used the same segmentation settings.  However, the 

LiDAR objects were typically larger than the spectral image objects (Table 9). For the subsequent 

Random Forest classification and regressions, I used a scale setting of 50 for all image combinations 

because the setting segmented the image into objects that in general were not too large to misclassify 

the classes of interest and were too small to generate too much heterogeneity within the objects.  For 

example the higher scale settings created objects that spanned the channel and the forest for the 

LiDAR only image in more frequent places than the 50 scale setting (Figure 11). The Scale settings of 

100 and 150 segmented the 8-Band WV-2 image and the combined LiDAR and 8-Band WV-2 Image 

well but created objects in the LiDAR only image that were too coarse to capture the landcover 

classes.  Note the 4-Band WV-2 image is not included in Figure 11 but a scale of 50 was also used to 

segment this image.  

 

Table 9. Summary statistics for image objects derived using a 50 scale setting.  

Object Information 

LiDAR 

only 

Image 

LiDAR and 

8-Band 

WV-2 

Image 

8-Band 

WV-2 

Image 

4-Band 

WV-2 

Image 

# Objects 41,596 124,109 170,461 179,610 

Minimum Area (m
2
) 1.75 1.50 0.25 1.00 

Maximum Area (m
2
) 12,643.25 4,344.75 5,476.75 4,856.25 

Mean Area (m
2
) 413.95 138.71 100.99 95.84 

Median Area (m
2
) 287.50 115.75 80.75 75.50 

SD Area (m
2
) 497.34 116.89 93.06 89.95 
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Figure 11. Example of the output of the multi-resolution segmentation with varying scale parameters 

for the three combinations of data.  Shape parameter, 0.3 and compactness parameter, 0.5 for all 

combinations. 
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4.4 Random Forest Classification  

 

The RF classification for the 8-band WV-2 image resulted in an overall classification 

accuracy of 82% compared with overall classification accuracy of 79% for the 4-band WV-2 image 

(Table 10, Table 11).  Classifying using just the LiDAR image resulted in an overall classification 

accuracy of 74% (Table 12).  The combined LiDAR and 8-band WV-2 image increased the overall 

classification accuracy to 88% (Table 13). The 8-band WV-2 RF classification had the highest 

Producer’s accuracy for Water, followed by Pasture, and then Gravel bar (Table 10). The Developed 

class had the lowest Producer’s and User’s accuracy for all four classification processes and was 

confused primarily with roads. Roads were most often confused with classes Gravel bar and Conifer.  

Conifer and Deciduous exhibited the most confusion between the two classes.  The conifer class had a 

slightly higher User’s accuracy, 75%, compared with 70% for the Deciduous class as classified from 

the 8-Band WV-2 image.  The 4-Band WV-2 image accuracies were lower for most classes compared 

to the 8-band WV-2 image with the exception of the User’s accuracies for the Pasture and Developed 

classes and the Producer’s accuracies for the Gravel bar, Pasture, and Developed classes. The LiDAR 

only image class error decreased for Deciduous and Conifer when combined with the 8-band WV-2 

image from 20% and 2% to 16% and 18% respectively (Table 10, Table 13).  Overall, the combined 

LiDAR and 8-Band WV-2 image was the most useful for classifying all classes.  However, the 

spectral imagery had the most influence on classifying the  Water, Gravel bar, and Pasture classes 

based on the high class accuracies for the  4-Band WV-2 image and the 8-Band WV-2 image 

compared with the low class accuracies for the LiDAR only image.  However, the LiDAR only image 

was the most useful for classifying the Developed and almost as accurate as the combined LiDAR 

and 8-Band WV-2 image at classifying the forested classes, Deciduous and Conifer.  



 

48 

 

Table 10. Random forest classification results confusion matrix for 8-band WV-2 image. 

  

Reference Data 

 

  Water Gravel Bar Pasture Developed Deciduous Conifer Roads  Total Class Error 
Users 

Accuracy 

C
la

ss
if

ie
d
 D

a
ta

 

Water 150 0 0 0 1 1 0 152 1.32% 98.68% 

Gravel 

Bar 
1 95 0 0 0 0 6 102 6.86% 93.14% 

Pasture 0 0 187 1 5 2 3 198 5.56% 94.44% 

Developed 0 1 0 17 0 1 22 41 58.54% 41.46% 

Deciduous 0 0 4 0 159 62 2 227 29.96% 70.04% 

Conifer 1 0 1 0 55 171 1 229 25.33% 74.67% 

Roads 1 7 1 3 2 5 90 109 17.43% 82.57% 

 
Total 153 103 193 21 222 242 124 1058 Overall Accuracy:  

 

Producer's 

Accuracy 98.04% 92.23% 96.89% 80.95% 71.62% 70.66% 72.58% 

 
82.14% 
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Table 11. Random forest classification results confusion matrix for 4-band WV-2 image. 

  

Reference Data 

 

  Water Gravel Bar Pasture Developed Deciduous Conifer Roads  Total Class Error 
Users 

Accuracy 

C
la

ss
if

ie
d
 D

a
ta

 

Water 148 0 0 1 1 2 0 152 3.00% 97.37% 

Gravel 

Bar 
0 94 0 0 0 0 8 102 8.00% 92.16% 

Pasture 0 0 189 1 4 1 3 198 5.00% 95.45% 

Developed 2 3 1 20 2 0 13 41 51.00% 48.78% 

Deciduous 0 0 1 0 144 82 0 227 37.00% 63.44% 

Conifer 1 0 0 1 71 153 3 229 33.00% 66.81% 

Roads 3 4 2 5 2 6 87 109 20.00% 79.82% 

 
Total 154 101 193 28 224 244 114 1058 Overall Accuracy: 

 

Producer's 

Accuracy 96.10% 93.07% 97.93% 71.43% 64.29% 62.70% 76.32% 

 
78.92% 
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Table 12. Random forest classification results confusion matrix for LiDAR only image. 

  

Reference Data 

 

  Water Gravel Bar Pasture Developed Deciduous Conifer Roads  Total Class Error 
Users 

Accuracy 

C
la

ss
if

ie
d
 D

a
ta

 

Water 89 16 20 0 7 2 10 144 38.19% 61.81% 

Gravel 

Bar 
19 63 19 0 2 0 7 110 42.73% 57.27% 

Pasture 18 12 159 1 2 0 8 200 20.50% 79.50% 

Developed 0 0 1 33 5 1 1 41 19.51% 80.49% 

Deciduous 0 1 0 2 182 41 1 227 19.82% 80.18% 

Conifer 1 1 0 1 42 183 1 229 20.09% 79.91% 

Roads 3 4 16 5 3 3 73 107 31.78% 68.22% 

 
Total 130 97 215 42 243 230 101 1058 Overall Accuracy: 

 

Producer's 

Accuracy 68.46% 64.95% 73.95% 78.57% 74.90% 79.57% 72.28% 

 
73.91% 
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Table 13. Random forest classification results confusion matrix for the combined LiDAR and 8-Band WV-2 Image. 

  

Reference Data 

 

  Water Gravel Bar Pasture Developed Deciduous Conifer Roads  Total Class Error 
Users 

Accuracy 

C
la

ss
if

ie
d
 D

a
ta

 

Water 149 0 0 0 0 0 3 152 1.97% 98.03% 
Gravel 

Bar 
0 92 0 0 0 0 10 102 

9.80% 90.20% 

Pasture 0 1 191 1 1 0 4 198 3.54% 96.46% 

Developed 2 0 1 31 1 2 4 41 24.39% 75.61% 

Deciduous 0 0 0 0 191 36 0 227 15.86% 84.14% 

Conifer 1 0 0 0 40 188 0 229 17.90% 82.10% 

Roads 4 5 0 3 3 0 94 109 13.76% 86.24% 

 
Total 156 98 192 35 236 226 115 1058 Overall Accuracy: 

 

Producer's 

Accuracy 95.51% 93.88% 99.48% 88.57% 80.93% 83.19% 81.74% 

 
88.47% 
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For each of the three image classifications that incorporated spectral information, the NIR-1 

band was one of the three most important variables.  For the 8-band WV-2 image, the three variables 

of most importance were: 1) Mean NIR-1, 2) Mean NIR-2, and 3) Mean Red Edge (Figure 12).  For 

the 4-band WV-2 image, the three variables of most importance were: 1) Mean NIR-1, 2) Mean Blue, 

and 3) Mean Brightness Index (Figure 13).  For the LiDAR only image, the three variables of most 

importance were: 1) Mean Max Height, 2) Mean Mean Height, and 3) Mean 95th percentile height 

(Figure 14). For the combined LiDAR and 8-band WV-2 image the three variables of most 

importance were: 1) Mean NIR-1, 2) Mean Max Height, and 3) Mean NIR-2 (Figure 15). The 

combined LiDAR and 8-Band WV-2 image maintained two of the top predictors for each image as 

the top predictor variables in the RF classification.  Object area, compactness, and length to width 

ratio had minimal influence on landcover classification in all four classifications.   
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Figure 12. Variable importance plot represented by the Mean Decrease Gini values for the 8-band 

WV-2 image RF classification. 
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Figure 13. Variable importance plot represented by the Mean Decrease Gini values for 4-band WV-2 

image RF classification.  
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Figure 14.  Variable importance plot represented by the Mean Decrease Gini values for LiDAR only 

image RF classification. 
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Figure 15. Variable importance plot represented by the Mean Decrease Gini values for combined 

LiDAR and 8-band WV-2 image RF classification. 
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A mapped classification from the entire 8-Band WV-2 image is shown in Figure 16 with 

subsets for two zones illustrating all four classifications. In Zone 1, the road was misclassified as 

water in all three datasets that contained spectral data, the 4-Band WV-2 image, 8-band WV-2 image 

and combined LiDAR and 8-Band WV-2 image (Figure 16).  In Zone 2 the gravel bar was 

misclassified as road for the same three datasets.  The classified 4-band WV-2 image shown in Zone 

2 contains larger patches of the conifer class compared to the other three datasets.  The classification 

of the LiDAR only dataset contains fewer small classifications of both the conifer and deciduous 

classes compared to the other three datasets. In Zone 1 the 8-band WV-2 image and the combined 

LiDAR and 8-band WV-2 image incorrectly identified pasture on the gravel bar which was not 

apparent in either the 4-Band WV-2 image or the LiDAR only image.  
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Figure 16. a) Random forest classification map for 8-Band WV-2 image showing full classification 

area. For Zones 1 and 2: b. and g.) 4-Band WV-2 Classification, c. and h.) 8-Band WV-2 

Classification, d. and i.)  LiDAR and 8-Band WV-2 Classification, e. and j.) LiDAR Only 

Classification, f. and k.) Panchromatic Image.  
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4.5 Random Forest Regression 

The LiDAR metrics alone described the largest amount of variance out of the three datasets 

(Table 13).  For SD DBH, Max DBH, and Basal Area, the LiDAR only dataset explained greater than 

50% of the variance. For the response variables Mean DBH and Stem Density DBH >50cm, the 

LiDAR dataset explained less than 50% of the variance, 46 % and 40 % respectively.  The RF 

regression analysis for the LiDAR metrics explained the most variance for the response variable SD 

DBH, 64% (Table 14). SD 95th percentile height, SD of Mean height, and SD of Max height were the 

best predictors of SD DBH (Table 15, Figure 17).  SD Max Height and SD 95
th
 % Height were the 

best predictors of Max DBH (Table 15, Figure 18).  The top three predictor variables for Basal Area 

for the LiDAR only image were all mean statistics, specifically, Mean 95
th
 percentile height, Mean 

Max Height, and Mean Mean Height (Table 15, Figure 19).  For the LiDAR only image, SD 95th 

percentile height, SD Mean Height, and SD Max Height were the top overall predictors for all 

response variables (Table 15).   The top three predictor variables for the combined LiDAR and 8-

Band WV-2 image dataset were SD Mean Height, SD Max Height, and Mean 95
th
 % Height (Table 

16). The top three predictor variables for Basal Area and SD DBH were the same for both the LiDAR 

only and the 8-Band WV-2 image dataset and were all LiDAR metrics.  This was similar to Max 

DBH but the order was different with SD Max Height as the top predictor for the LiDAR only dataset 

and SD 95
th
 % Height as the top predictor for the combined LiDAR and 8-Band WV-2 image dataset.  

Plots of predicted values by the LiDAR only image compared with the observed response variables 

are shown in Figure 20. 

The 8-Band WV-2 image alone was a poor fit for all riparian forest structure response 

variables (Table 14).  All values for percent variance explained were negative indicating no 

significant relationship (Horning 2011). Only the percent variance explained is reported for this 

dataset because the variables of importance do not explain any of the variance to provide meaningful 

results.  The percent variance in the riparian forest structure variables explained by the 8-Band WV-2 

and LiDAR image was considerably higher compared with the 8-Band WV-2 alone (Table 14).   
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However, the top three predictors were still all LiDAR metrics, with the exception of the variable 

Stem density which contained SD Coastal band as a top predictor (Table 16).  The model for Stem 

density was poor for all three datasets as indicated by the negative values % variance explained for 

the 8-Band WV-2 and the combined LiDAR and 8-Band WV-2 datasets and the low value, 6%, for 

the LiDAR only datasets.  While the LiDAR only dataset performed the best, the combined LiDAR 

and 8-Band WV-2 dataset explained over 50 % of the variance for SD DBH, 57%, and close to 50 % 

for Max DBH, 47%.    

 

Table 14. Percent variance explained by the RF regression models for the 8-Band WV-2 image, the 

LiDAR only image, and the combined LiDAR and 8-Band WV-2 image  (n=22). 

 

Percent Variance Explained 

 

8 Band WV-2 LiDAR 
8 Band WV-2 and 

LiDAR 

Mean DBH -15.8 45.87 33.23 

SD DBH -14.94 64.41 56.61 

Max DBH -5.91 55.44 47.37 

Basal Area -17.42 57.05 33.65 

Stem Density -28.31 6.11 -3.57 

Stem Density DBH >50 cm -53.26 40.31 12.42 

 

 

Table 15. Top three predictor variables of the field based riparian forest structure metrics from the RF 

regression models developed for the LiDAR only image as described by %Increase Mean Square 

Error (MSE). 

Forest Structure 

Variable 
RF Predictor 1  RF Predictor 2  RF Predictor 3  

Mean DBH Mean 95th % Height  Mean Max Height  SD 95th % Height  

SD DBH SD 95th % Height  SD Max Height SD Mean Height  

Max DBH SD Max Height SD 95th % Height  SD Mean Height  

Basal area Mean 95th % Height  Mean Max Height  Mean Mean Height  

Stem density SD Mean Height  SD Max Height SD 95th % Height  

Stem density trees > 

50 cm DBH 
Mean Rumple Mean Max Height  SD Mean Height  
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Table 16. Top three predictor variables of the field based riparian forest structure metrics from the RF 

regression models developed for the combined LiDAR and 8-Band WV-2 image as described by 

%Increase Mean Square Error (MSE). 

Forest Structure 

Variable 
RF Predictor 1  RF Predictor 2  RF Predictor 3  

Mean DBH Mean Max Height  Mean Rumple Mean 95th % Height  

SD DBH SD 95th % Height  SD Max Height SD Mean Height  

Max DBH SD 95th % Height  SD Max Height SD Mean Height  

Basal area Mean 95th % Height  Mean Max Height  Mean Mean Height  

Stem density SD Mean Height  SD Max Height SD Coastal  

Stem density trees > 

50 cm DBH Mean Rumple SD Mean Height  Mean 95th % Height  

 

 

 
 

Figure 17. Percent Increase in Mean Square Error (%IncMSE) for the LiDAR only RF regression 

model developed for SD DBH. 
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Figure 18. Percent Increase in Mean Square Error (% Inc MSE) for the LiDAR only RF regression 

model developed for Max DBH. 

 

    

Mean.Cover

Mean.Mean.Height

Mean.Max.Height

SD.Cover

Mean.95th.Height

Mean.Rumple

SD.Mean.Height

SD.95th.Height

SD.Max.Height

2 4 6 8 10 12

%IncMSE

Mean.Mean.Height

Mean.Cover

Mean.95th.Height

Mean.Max.Height

SD.Cover

Mean.Rumple

SD.Mean.Height

SD.Max.Height

SD.95th.Height

0 2000 4000

IncNodePurity

rf6_max_DBH



 

63 

 

 

Figure 19. Percent Increase in Mean Square Error (% Inc MSE) for the LiDAR only RF regression 

model developed for Basal Area. 
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Figure 20. Observed vs. predicted variables from the LiDAR only image RF regression analysis, n = 

22. Line represents 1:1 ratio. % Var (Variance) Explained describes model fit.  
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4.5.1 Mapped Random Forest Regression Predictions 

 

I applied the RF regression models from the LiDAR only dataset to the forested classes 

(conifer and deciduous) identified from the LiDAR only RF classification.  The Stem density model 

was not applied to the classified image due to poor predictive power (Table 13).  The differences 

between the models are shown for a subset of the study area in Figure 21.  The left bank of this 

location is dominated by conifer forest of greater height and maturity than the younger, deciduous 

dominated right bank forest.  The predicted RF regression models reflect these differences.  The left 

bank forest has a higher Mean DBH values, greater variability with  higher SD DBH values, higher 

Max DBH values, larger Basal area values, and a higher stem density of trees > 50 cm DBH 

compared to the right bank. 
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Figure 21. Image subsets of LiDAR only image RF regression models for riparian forest structure 

metrics predicted from the LiDAR RF regression analysis across the LiDAR RF classification of 

conifer and deciduous forests.   
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4.6 Application of Random Forest Analysis 

After applying the best-performing RF regression models to the forested classes in the 

LiDAR only RF classified image, I categorized the riparian forest metrics to illustrate one potential 

application of these products for restoration prioritization based on the large woody debris 

recruitment potential of the riparian forest. Due to the poor performance of the Stem density model, it 

was not included. I included the classified LiDAR metric for cover as a substitute for stem density.  

Canopy cover can provide an indication of stem density because increased stem density provides 

higher canopy cover and a less dense stand will have less canopy cover. Visual inspection of the 

raster grid for cover derived from LiDAR suggested the results provided a suitable surrogate to aid in 

prioritization of riparian forest and the correlation analysis of showed a significant relationship 

between LiDAR derived cover and Stem density.  I categorized the dataset by riparian forest class, 

size, and density based on similar methods previously used for watershed analysis (WFPB 1997).  

This approach generated 14 unique categories that can be further grouped for restoration prioritization 

(Table 17).  The code is a combination of the first letter in each category.  For example, CSD is a 

Conifer, Small, Dense classification.  The LWD recruitment potential is based on a low, medium, and 

high scale as identified in the watershed analysis methods (WFPB 1997). The final classified dataset 

provides individual raster grids that can be used in GIS to categorize the riparian forest as provided in 

this application. A final map of the riparian forest categories can be seen in Figure 22.  The largest 

category based on percentage of total area classified was Deciduous Small Dense (DSD) followed by 

Conifer Small Dense (CSD) (Table 18). 
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Table 17. Riparian forest vegetation categories. Categories and LWD (Large Woody Debris) 

Recruitment Potential based on WFPB (1997). Code indicates the first letter of each category, for 

Riparian Forest Class, Size (Mean DBH), and Density. 

 

Riparian 

Forest Class 
Size Density Code  

LWD 

Recruitment 

Potential 

Conifer 

Small
1
 

Dense
4
 CSD Low 

Sparse
5
 CSS Low 

Medium
2
 

Dense CMD High 

Sparse CMS Med 

Large
3
 

Dense CLD High 

Sparse CLS Med 

Deciduous 

Small 
Dense DSD Low 

Sparse DSS Low 

Medium 
Dense DMD Med 

Sparse DMS Low 

Large 
Dense DLD Med 

Sparse DLS Low 

No Forest na na NF Low 

Active Channel 
6
 

na na AC na 

1
 Small: mean dbh <=30 cm 

   2
 Medium: mean dbh>30 dbh and <=50 cm dbh 

  3
 Large: mean dbh > 50 cm 

   4 
Dense: cover >=60%  

   5
 Sparse: cover <60 %  

   6
 Active Channel Digitized from 2006 NAIP Aerial Photo 
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Figure 22. Riparian vegetation by forest class, size, and density. See Table 16 for riparian vegetation 

codes. No large deciduous trees (DLS or DLD) were found in the study area.   
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Table 18. Area of riparian forest categories in acres, percentage of total area, and percentage of 

forested area. The categories conifer large dense (CLD) and conifer large small (CLS) were less than 

0.00002% of total area and forested area. 

 

 

 

 

 

Category 
Area 

(Acres) 

Percentage 

of Total 

Area 

Percentage 

of Forested 

Area 

CSD 715.34 1.10% 23.09% 

CSS 113.40 0.17% 3.66% 

CMD 561.99 0.86% 18.14% 

CMS 30.30 0.05% 0.98% 

CLD 0.01 0.00% 0.00% 

CLS 0.01 0.00% 0.00% 

DSD 1,153.34 1.77% 37.23% 

DSS 168.18 0.26% 5.43% 

DMD 262.21 0.40% 8.46% 

DMS 93.26 0.14% 3.01% 

DLD 0.00 0.00% 0.00% 

DLS 0.00 0.00% 0.00% 

No Forest 61,722.58 94.86% na 

Active 

Channel 243.43 0.37% na 
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5.0 Discussion 

5.1 Correlations between LiDAR and field based forest metrics 

The preliminary analysis of LiDAR metrics provided support for using the seven selected 

LiDAR metrics in the image classification and regression phases of this study.  All field metrics were 

significantly correlated with at least one LiDAR metric and often with more than one metric. The 

strength of the correlations were modest but illustrate significant relationships between field metrics 

and LiDAR metrics (Table 8).   

Certain relationships were stronger than others.  In particular, Basal Area was correlated with 

all LiDAR metrics but showed the strongest correlations with Mean Height, followed by 95
th
 

Percentile Height, and Maximum Height.  This is similar to the results of Lefsky et al. (1999) where 

basal area was predicted by number of waveforms > 55 m, indicating the relationship between basal 

area and the height of the upper percentiles.  However, in the same study the basal area of just 

Douglas fir was predicted by mean canopy surface height and open gap volume. Means et al. (1999) 

found basal area predicted by maximum canopy height from LiDAR.   SD DBH had the strongest 

relationships with Maximum Height, SD Height, and the 95
th
 Percentile Height.  This is expected 

because a stand with taller trees would typically represent a more mature forest which would exhibit 

greater variability in tree size and greater maximum tree size.  Lefsky et al. (1999) also found 

maximum canopy height to be a strong predictor of SD DBH. 

Mean DBH had the strongest correlations with Maximum Height and 95
th
 Percentile Height 

which is surprising because both height metrics are representative of the maximum measurements and 

not averages of height distribution. Similarly, Maximum DBH had the strongest correlation with 

Maximum Height followed by the 95
th
 Percentile Height.  Stem Density was negatively correlated 

with all three LiDAR metrics that measure height variability: SD Height, CV Height, and Rumple but 

positively correlated with cover. These is expected as mature forests exhibit greater variability and are 

less dense than younger less developed stands. Younger stands, especially stands following 
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commercial timber harvest, have a higher proportion of even aged, dense trees.    Lefsky et al. 

(2005a) also found relationships between LiDAR derived canopy cover and stem density.  Hudak et 

al. (2006) found that LiDAR cover was the strongest predictor variable of basal area and tree density 

for dominant tree species in Idaho.  However, they also found LiDAR canopy height variables 

predicted basal area better than tree density and the LiDAR canopy cover variable predicted tree 

density better than basal area.  Stem Density DBH ≥50 cm was not correlated with cover and instead 

the strongest relationships were with Maximum Height and 95
th
 Percentile Height.  This reflects the 

concept that older forests have higher variability in canopy structure and a greater proportion of larger 

trees (Alaback 1982a, 1982b; Naiman et al. 1998).   While Rumple correlated with all field metrics, 

the correlation coefficients were lower compared to other LiDAR metrics that correlated with field 

metrics. 

Previous studies have found the 95
th
 percentile height to align closer to the field measure of 

canopy maxima (Kane et al. 2010a; Nord-Larsen and Riis-Nielsen 2010).  However, in this study 

there was not a large difference in the strength of correlations between maximum height and 95
th
 

percentile height and the response variables.   

 Previous studies have found that LiDAR metrics that came from three categories of stand 

structure were highly correlated with stand structure (Lefsky et al. 2005a; Kane et al. 2010a).  The 

three LiDAR metrics are height, variation in height, and canopy density.  Kane et al. (2010a) found 

the strongest correlations with 95
th
 percentile height, rumple, and canopy cover.   While the LiDAR 

metrics and field metrics in this study were not highly correlated, the results demonstrate similar 

relationships that provide support for using the seven LiDAR metrics derived from the first returns 

LiDAR dataset as part of an image classification scheme to describe riparian stand structure 

complexity. 

5.2 Random Forest Classification 

In this study, I described the individual and integrated capabilities of multispectral data and 

LiDAR data to estimate riparian landcover classes and riparian forest structural attributes.  I also 
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explored the additional spectral bands provided by the WV-2 image for landcover classification by 

comparing the full 8-Band WV-2 image with the subset of the 8-Band image that only contained the 4 

spectral bands used by the conventional satellites (e.g., IKONOS and similar).  Classification 

accuracy for the main classes of interest (conifer and deciduous) was higher when using the full 8-

Band image rather than the 4-Band image.  Overall, the use of the combined LIDAR and 8-band WV-

2 image improved the outcome of the landcover classification for all classes compared to the use of 

either dataset alone.   However, classification accuracy for the forest classes with the LiDAR-only 

image was similar to the combined LIDAR and WV-2 8-band image. Both the 4-band WV-2 image 

and 8-band WV-2 image were more useful at classifying the active channel classes, water and gravel 

bar classes, compared to the LiDAR only image.  

The 8-Band WV-2 image was more useful for classifying landcover classes compared to the 

4-Band WV-2 image, the main differences occurred between the two forest classes, deciduous and 

conifer.  The inclusion of the additional four bands in the 8-Band WV-2 Image increased the User’s 

accuracy of both the deciduous, 7%, and conifer, 8%, classes.  This is not surprising because the four 

additional bands were designed to improve differentiation among vegetation classes (Digital Globe 

2010). However, the 4-Band image had slightly higher User’s accuracies for the two classes pasture 

and developed. The NIR-1 band was the variable of most importance for both the 4-Band WV-2 

image and the 8-Band WV-2 image.  However, the 2
nd

 and 3
rd

 variables of most importance differed 

between the two images. The Blue band and the Brightness index were the next most important 

variables for classifying landcover classes for the 4-Band WV-2 image, and the two of the new bands, 

NIR-2 and Red Edge, were the next most important for the 8-Band WV-2 image (Figure 13, Figure 

12).  These results are similar to another study in Malaysia that found the NIR-2 band, NIR-1 and the 

Red Edge to be the top three bands of importance in classification of tree species also using a RF 

classification algorithm for a WV-2 image (Omar et al. 2010). Chen (2010) also found the additional 

four bands of a WV-2 image increased classification accuracy for Hawaiian tree species using both a 

pixel-based and object-based classification.  Immitzer et al. (2012),found the 8-bands of the 
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WorldView-2 classified tree species in Austria better than the four standard bands using the RF 

algorithm when classifying 10 different tree species. However, the results were similar between the 4-

band and 8-bands when only looking at the four major species.   Specifically, they found, Green, 

NIR-1, Blue followed by Red and NIR-2 as the bands of most importance in predicting forest species.   

Overall, the inclusion of the four new spectral bands in the WV-2 image, in particular the NIR-2 band 

and the Red-Edge band, increased the capacity to distinguish conifer and deciduous classes.  

Including the NIR-2 band may have improved the results because it is less likely to be affected by 

atmospheric influence (Immitzer et al. 2012; Digital Globe 2010). 

The LiDAR only image produced lower overall classification accuracies compared to the 

other three images.  However, the Producer’s accuracy and User’s accuracy for the forested classes 

were comparable to, but slightly lower, than the combined LIDAR and 8-Band WV-2 image.   Use of 

the LiDAR only image results in classification accuracies that are high for the developed and pasture 

classes (Table 11).  The variables of most importance according to the Mean Decrease in the Gini 

coefficient were Mean Max Height, Mean Mean Height, and Mean 95
th
 Percentile Height followed by 

Mean SD Height and Mean Rumple (Figure 14).  This suggests that for the LiDAR only image, the 

LiDAR metrics which represent the upper surface of the canopy, Max Height and 95
th
 Percentile 

Height, are most useful for  discriminating between landcover classes.  The most confusion was 

between the water, gravel bar, and road classes.  The results for water and gravel bar classes is not 

surprising because the channel alignment and flow would have been different at the time of LIDAR 

data acquisition (2006) compared to the Pictometry datasets (2008, 2010) that the training data was 

derived from, meaning different portions of the gravel bar would be exposed and different areas 

covered by water.  The Pictometry dataset was from the same year as the WV-2 dataset.  I did not 

generate a separate reference dataset to test these two classes for the LiDAR only image which had 

the greatest difference between the two different images from different dates.  The challenges 

associated with classifying gravel bar likely caused error in the road class as well because the road 

class and gravel bar class share similar spectral properties. However, water differs spectrally from 



 

75 

 

both the road and gravel class and it is likely that spectral imagery such as the WV-2 imagery will be 

more useful for separating those classes despite the differences in dataset acquisition times.  Ideally 

the LiDAR and multispectral imagery would be collected during the same time frame, if not the same 

day for more accurate comparison and/or integration.   

In addition to the problems associated with the differences in the timing of acquisition for the 

LIDAR and WV-2 data, delineation of the active channel area, including the gravel bar and water 

classes, is problematic for the LiDAR because of the difficulty in obtaining LiDAR data over water 

surfaces in general. LiDAR instruments emit pulses of energy in the near IR portion of the spectrum 

and record this energy as it reflects from earth surface features.  Vegetation, bare soil and gravel are 

highly reflective in the near IR portion of the spectrum, but clear water absorbs strongly in this 

portion of the spectrum.  A LIDAR pulse that hits a clear, deep water body results in no return and a 

“no data” value for this area.  Very shallow, clear water and water with a high silt load will result in 

returns that are comparable to those for exposed gravel.  For this reason, it is likely that spectral data 

will continue to outperform LiDAR data for classifying the water.  

An issue associated with LiDAR pre-processing likely had a larger effect on the utility of this 

LiDAR dataset for classifying water, especially on the margins of the channel. In order to run the 

segmentation algorithm and export the mean and standard deviation for the seven LiDAR metrics, I 

interpolated values to the no-data locations based on neighboring pixel values.  The 3.7-m pixel size 

for the LiDAR grids resulted in some of the interpolated pixels containing erroneous data, such as 

elevations more similar to neighboring trees on the stream bank than to the water elevation (Figure 

11).  This was one of the drawbacks to the object-based analysis compared to a pixel-based approach.  

A potential solution to remedy this issue is to generate a stream layer from the LiDAR dataset that 

incorporates a more sophisticated algorithm to assign values to the no-data pixels.  Arroyo et al. 

(2010) developed an algorithm to classify areas of steep slope adjacent to potential stream as stream 

bank based on a LiDAR derived digital terrain model and slope map. The defined streambed layer 

was then incorporated into the following image segmentation.  Defining the stream is also helpful in 
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quantifying overhanging vegetation from the bank and the amount of shade on the channel.  A 

LiDAR derived stream layer would also improve the accuracy of stream locations in heavily forested 

areas.  Often the GIS stream dataset does not line up with actual stream location due to rapid channel 

migration and seasonal and diurnal variation in water levels.  This is problematic for developing the 

riparian buffer area, which is based on distance from the stream location.  Critical areas of riparian 

forest could be excluded from the analysis if a buffer is based on geographically incorrect 

hydrological dataset. Developing a stream layer from the LiDAR dataset was beyond the scope of this 

project.   

The combination of LiDAR metrics and the 8-Band WV-2 image produced the highest 

overall accuracy of the landcover classification compared to the other three datasets.  The mean error 

decreased considerably for the developed, deciduous, conifer, and road classes compared with the 8-

band WV-2 image and the 4-Band WV-2 image.  The deciduous and road classifications for the 

LiDAR only image were improved by the integration of the LiDAR and spectral data.  However, the 

producer’s and user’s accuracy for the water and gravel bar classes decreased slightly compared with 

the 8-Band WV-2 image.  This is likely due to the errors associated with the LiDAR dataset for the 

active channel described above.   Combining the LiDAR and 8-Band WV-2 image resulted in 

changes to the variables of most importance as well.  The top four variables of most importance 

included both the spectral and LiDAR metrics, specifically in order of importance, Mean NIR-1 band, 

Mean Max Height, Mean NIR-2 band, and Mean 95
th
 % Height, (Figure 15).  These respective 

spectral and LiDAR metrics were in the top three variables of importance for each respective dataset 

on their own.  It is not surprising that the two LiDAR metrics representing the upper portion or top of 

the canopy surface model are important for deciphering landcover classes that have different vertical 

structure.  LiDAR Max Height and 95
th
 Percentile Height also exhibited strong relationships in the 

correlation analysis with the riparian forest field metrics and in predicting riparian forest structure.  

Other studies have found increased accuracies in classification of WV-2 imagery with the addition of 

LiDAR height information (Aguilar et al. 2012).   
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For all RF classifications the mean values for the various bands and LiDAR metrics 

explained more variance than the SD of the spectral bands and metrics.  The shape and size metrics 

ranked low for importance in predicting the response variables.  Out of the three shape and size 

metrics, the length/width ratio was higher in importance based on the mean decrease in Gini except 

for the LiDAR only dataset.  This is not surprising because there were features in the study area that 

were long and thin, such as roads and edges of gravel bars compared with features that were wider 

such as pasture.  These two classes included objects with different length/width ratios. This indicates 

that the spectral bands and LiDAR metrics are more accurate predictors of different riparian 

landcover classes than object shape and size metrics.  

Overall, all four images were valuable for separating the seven landcover classes.  The 8-

Band WV-2 Image was better overall compared to the 4-Band WV-2 image for classifying the 

forested classes but not necessarily the other landcover classes.  The LiDAR only image had a lower 

overall accuracy compared to the three other datasets but was similar at classifying the forested 

classes.  The combined LiDAR and 8-Band WV-2 image had the highest overall accuracy compared 

to the other three datasets but was not dramatically better than the LiDAR only dataset at classifying 

the forest classes.  The LiDAR only image was least successful for classifying the landcover classes, 

water, gravel bar, and pasture, which were the categories that both the 4-Band WV-2 and 8-Band 

WV-2 images were most effective at classifying.   These results suggest that depending on the classes 

of interest, combining spectral and LiDAR imagery might not be necessary to achieve high 

classification accuracies.  To separate conifer and deciduous classes, the LiDAR only image was 

sufficient.  Another way to examine the landcover classification would be to reduce the seven 

landcover classes to three classes by grouping all non-forest classes into one class and preserving the 

deciduous and conifer classes. The overall accuracies when the seven classes are reduced to the three 

that are the most applicable to riparian restoration (non-forest, conifer, and deciduous) for the 4-Band 

WV-2, 8-Band WV-2, LiDAR only, Combined LiDAR and 8-Band WV-2 images were: 83%, 86%, 

91%, and 92% respectively. 
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For the RF classification analysis, increasing the sample size for the landcover classes would 

be beneficial.  Due to the high variability in riparian stands, more samples are needed to represent the 

differences compared to an upland forest. For example, often a deciduous patch would have small 

segments of conifer classifications that were smaller than an actual tree crown.  In this study I 

digitized landcover classes for a point location from high resolution aerial photos, but entire stands of 

a homogeneous forest type in the form of a polygon could be used as training samples for the 

landcover classification as in Gergel et al. (2007).  

The segmentation phase was a pre-classification phase where I performed basic operations in 

order to keep the methods and results comparable.  To optimize the segmentation phase, additional 

information could be generated from the objects and also other levels of segmentation could be 

performed on the output to further refine the results.  For example, long, thin objects classified as 

roads but surrounded by gravel bar are likely gravel bar and be reclassified based on their shape and 

proximity to other classes.  In addition to incorporating context, spectral and spatial enhancements 

could be applied to the multispectral imagery such as the Normalized difference vegetation index 

(NDVI) or image texture features such as entropy or contrast (Johansen and Phinn 2006; Sridharan 

2010).  Other biological, geographic and edaphic variables could also be incorporated to improve the 

model such as soil moisture, slope, aspect, precipitation, and tree distance to stream. 

5.3 Random Forest Regression 

The results from the RF regression analysis indicate forest structure metrics can be derived 

from LiDAR only images and combined LiDAR and 8-Band WV-2 images. The LiDAR only image 

was the most useful for predicting riparian forest structure variables out of the three images (Table 

14).  The 8-Band WV-2 image had no predictive power as indicated by the negative values for 

percent variance for all six response variables.   The percent variance explained (% Var Explained), is 

defined as 1- mean squared error (MSE)/[variance (response)] and is used in place of the Out of Bag 

(OOB) error rate reported in RF classification (Pang et al. 2006).  Negative values can occur when the 

ratios of MSE and the variance of the response are greater than one.  Integrating the LIDAR and the 
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8-Band WV-2 images resulted in less predictive power than the LiDAR only image. This is likely due 

to the lack of a relationship between the spectral data from the 8-Band WV-2 image and the response 

variables.  The poor RF regression results for the 8-Band WV-2 image suggest that spectral data alone 

does not predict forest structure well despite success in other studies (Clark et al. 2004).  Clark et al 

(2004) found significant correlations between basal area in old growth tropical forest and the mean 

NIR-1 Band in IKONOS multispectral imagery.  They also found the panchromatic band correlated 

more often with forest structure than the multispectral bands.  Other studies have found metrics such 

as band mean, band ratios, and various texture metrics, derived from the Red and NIR bands 

correlated to stand height (Gemmell 1995; Gerylo et al. 2002; Chubey et al. 2006).  Taller trees 

typically have more foliage which causes red reflectance to decrease as it is absorbed by the foliage 

and the NIR reflectance to increase because foliage is highly reflective in the NIR (Chubey et al. 

2006).  However, Erdody and Moskal (2010) only found a slight increase in prediction accuracy of 

fuel load when NIR imagery added was to LiDAR.  Hudak et al. (2006) also found that the addition 

of multispectral imagery to LiDAR did not improve the predictions of basal area and stem density in 

coniferous forests in Idaho.   

The LiDAR only image outperformed the other two datasets in predicting all six riparian 

forest metrics. The LIDAR metrics explained the most variance for SD DBH, followed by Max DBH, 

Mean DBH, Stem Density of trees > 50 cm DBH, and Stem density.  Specifically, LiDAR metrics 

95
th
 Percentile Height, Maximum Height, and Mean height were the best predictor variables of the 

response variables.   Stem density was not predicted well by any of the three images despite other 

studies producing models with greater predictive power (Næsset and Bjerknes 2001; Hudak et al. 

2008). Hudak et al. (2008) found that LiDAR cover was the strongest predictor variable of species 

basal area and tree density in Idaho using an RF algorithm.   The cover metric generated in LiDAR 

tends to have a bias towards overestimating cover when the grid cell size is smaller than individual 

tree crowns (McGaughey et al. 2013).   Increasing the grid cell size to15 m or more might produce 

more meaningful cover metrics that could potentially predict stem density better.  This would require 
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increasing the plot width as well, which could be beneficial for predicting cover as well as other 

variables because the plot could capture more variability within a full tree canopy width for dominant 

trees.  Næsset and Bjerknes (2001) found LiDAR-derived canopy cover to be the only LiDAR 

variable that predicted stem density in young conifer stands in Norway.  Analyzing the data on an 

individual tree level compared to the plot level used in this analysis could be helpful in predicting 

stem density better because it would isolate individual trees in the imagery (Chubey et al.2006; Yu et 

al. 2011).  Stem Density DBH  ≥ 50 cm was predicted much better than Stem density overall by the 

RF regression models for the LiDAR only image.  Interestingly, Stem Density DBH  ≥ 50 cm was the 

only response variable with Mean Rumple as a top predictor for the LiDAR only image  and the 

combined LiDAR and 8-Band WV-2 image. This suggests stands that have trees ≥ 50 cm DBH 

exhibit more variability in tree DBH sizes, which is a characteristic of mature stands.  The combined 

LiDAR and 8-Band WV-2 image was less useful for predicting Stem Density DBH  ≥ 50 cm. 

Increasing the sample size of field plots could improve the RF regression model.  RF relies 

heavily on the quality and representation of the training data (Chubey et al. 2006).   It is likely that the 

small sample size of 22 plots does not represent the variability within the riparian forest in this study 

area.  Applying the methods for RF regression to the 63 plots located within the LiDAR only image 

boundaries (Figure 1) could potentially improve the model performance.  Research is needed into the 

minimum amount of training data needed for optimal model performance.  Also, doing a preliminary 

analysis of the study area to aid in stratifying the study area would be helpful.  For example trying to 

identify homogeneous stands of conifer or deciduous prior to field sampling and then generating 

points based on those areas could target the field sampling. Obtaining field samples from stands with 

a greater diversity of tree height and DBH would also be useful. Wondzell et al. (2011) segmented a 

LiDAR height raster and classified it into height classes before generating a random set of sample 

locations within the different height classes.  The plots in my study area likely exhibit greater within 

plot variability than between plot variability.  A stratified sampling approach that can target multiple 

stand variation categories would cover more variation across the riparian forested landscape.  This 
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could improve the capacity to capture a broader spectrum of forest stands in the field data.  Although, 

the availability of old growth riparian stands in this study area and many Puget Sound watersheds is 

limited by past land use practices, and it would likely be difficult to generate numerous plots in this 

category. Heumann (2011) suggests a thorough assessment linking field sampling schemes with 

(OBIA) of natural landscapes is needed because remote sensing field sampling protocols have been 

based on pixel based analysis at a lower resolution (e.g., 25 m Landsat pixels) than newer imagery.  

He suggests large-scale quadrat sampling or mapping boundaries of homogenous patches as areas to 

explore for OBIA field sampling methods.  In addition to increasing the quantity of plots, increasing 

the width of the plots would also be helpful because 10 m is typically insufficient to capture a tree 

canopy width.   

5.4 Application of Random Forest Models 

The application of my RF classification and regression models to categorize the riparian 

forest condition shows promise for increasing the efficiency and effectiveness of modeling large areas 

of riparian forest in order to prioritize sites for preservation and restoration.  I applied only results 

from the LiDAR only image for the riparian forest classes, deciduous and conifer (Figure 16), the 

mean DBH model (Figure 21) and the LIDAR Cover metric to examine the riparian function of large 

woody debris recruitment potential.  LWD recruitment potential is a function of tree size, species 

composition, either conifer or deciduous species, and the density or amount of recruitable trees (Bigly 

and Diesenhofer 2006). However, the other RF regression models could be used to address additional 

research and management questions.  For example the current WA Department of Natural Resources 

Forest and Fish regulations for timber harvest are intended to manage the riparian forest zone to 

create desired future conditions (DFC) which are based on stream type, site class index and basal area 

(WADNR 2010).   These three items could easily be incorporated to develop a model that addresses 

the DFC requirements.  To examine shade potential, I would integrate the models for Max height and 

Stem density of trees > 50 cm DBH with elevation and aspect information.  Explaining the Maximum 

height and also the density of large trees would show the potential of the trees to cast shadows over 
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the stream channel which would help to maintain cooler water temperatures. Aspect provides an 

important description of the trees and can be related to the solar azimuth at specific times to show 

where the shadows would be cast.   Elevation is an important element to a shade model because there 

are different shade requirements based on elevation that would be important for categorizing the 

shade potential and current status  (WADNR 2010). 

The results exhibited in the final map show that the lower portion of the South Fork 

Nooksack watershed is dominated by deciduous trees of small to medium sizes and non-forested 

areas (Figure 22).   While the upper portion of the watershed contains a larger area of conifers, very 

little forest contains large conifers, either sparse or dense classes.  It is surprising that there were no 

large deciduous trees identified throughout the entire study area.  However, this model is categorizing 

based on mean DBH.  While there are likely trees in the large size class, ≥50 cm DBH, this model 

suggests there are not enough to increase the mean DBH over that size threshold. The results suggest 

a need for restoring large conifers throughout much of the study area and provide a tool to point to 

specific areas where these large trees are lacking.  The upper watershed is on a trajectory for recovery 

in many areas but still needs time to reach optimal size of > 50 cm DBH for recruitment of functional 

pieces of large wood to the system.  This prioritization map can be used to target areas for future 

restoration which could involve conifer riparian planting, conifer release, or the addition of in stream 

large wood, but should be incorporated with local expert knowledge of the sites.  Potential sites 

should be examined in person prior to planning on the ground restoration.  In addition, the RF riparian 

forest structure models developed in this study can be used to further examine forest understory.  The 

portions of the study area that are currently dominated by deciduous trees could be targeted for 

planting of conifers in the understory, if ground surveys confirm that conifers are absent in the 

understory.  This is an interesting area for future development for remote sensing riparian forest 

modeling.  
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5.5 Future Research 

It would be worthwhile to explore the use of LiDAR intensity metrics, in conjunction with 

the LiDAR metrics used in this study to differentiate riparian conifer and deciduous classes, tree 

species, and describe riparian forest structure.  LiDAR intensity data has been used to identify and 

classify individual species successfully in other studies (Holmgren and Perrson 2004; Brandtberg et 

al. 2003).  The fusion of hyperspectral data and LiDAR has also been successfully in mapping species 

of the coastal Pacific Northwest (Jones et al. 2010).     

Future research could also explore analysis of riparian stands at the individual tree level 

compared to the stand level. Research into the capacity of the LiDAR data to evaluate riparian forest 

at the individual tree level would be helpful in determining stem density and tree crown 

characteristics (Suratno et al. 2010).  Also, analyzing the forest at an individual tree level could aid in 

distinguishing different tree species. Current LiDAR datasets are typically higher density (≥ 8 

points/m
2
) than the dataset used in this analysis (1.3-1.4 points/m

2
).  The increased point density will

 

increase the capacity to conduct individual tree analysis and evaluate additional stand development 

characteristics.  For example identifying forest stands with deciduous overstory with conifer 

regeneration below, which is an important functional class because it identifies the recovery stage of 

the riparian forests. However, it is difficult to classify due to obscuring canopy cover.  In addition to 

higher point densities, previous studies have suggested incorporating multi-temporal data to get leaf 

on and leaf off data with one growing season could help identify those differences (Gergel et al. 

2008).   

One of the challenges for modeling riparian forest using LIDAR and high resolution satellite 

imagery is the large volume of data that must be stored and processed.  For example, I had to process 

WV-2 study area as eight separate tiles rather than as a single dataset.  This added a significant 

amount of time to the image processing and added several pre-processing and post-processing steps to 

combine the results. Tiling the image, which was required because the image segmentation software 

could not analyze the full WV-2 image area, also created edge and seam issues when putting the tiles 
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back together.  This would be compounded if I tried to map larger areas.  In addition to size of the 

imagery, the upfront cost of imagery is typically high and requires specialized training and software 

to analyze the data. The cost of the data, software and analyst might still be offset by the amount of 

information that can be generated from the imagery.  Even though field sampling is still required to 

validate any image analysis, it is still likely less than the amount of field surveys that would be 

required to map the entire study area. These results provide an efficient way to expand the mapping to 

areas beyond the sample plots.  

I calculated the LiDAR metrics from only first returns data after initial examination of the 

first returns data set revealed they were comparable to the all returns dataset.  However, the field data 

included all trees ≥10 cm DBH and not just dominant and subdominant canopy trees.  It would be 

difficult to partition out the dominant canopy trees post data collection in a way that would effectively 

capture this.  In the future, this would be an important category to add in field data collection.  I did 

not include LiDAR intensity data in this study, although previous studies have shown the potential for 

using LiDAR intensity to classify forest structure and species types (Holmgren & Persson 2004; Voss 

and Sugumaran 2008).  In the future, intensity information could be added as data layers in the image 

analysis.   

Another challenge in this study was getting precise GPS data for the field plots.  Due to 

canopy cover interference with satellite reception, I was unable to GPS each corner of the field plots.  

This introduced error into the analysis because I calculated the coordinates of the other plot corners in 

the lab based on distance and azimuth recordings from the field.  In the future budgeting additional 

time or perhaps having an additional field crew member to focus on getting plot GPS coordinates 

would be more efficient and accurate.  However, in some heavily forested areas getting an accurate 

GPS location might still be challenging.  Another solution could be to use circular plots which only 

require one GPS location at the center point.  If the distance to stream is not a variable of interest, 

setting up circular plots within the riparian buffer might be sufficient to capture riparian forest 

characteristics.    
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6.0 Conclusion 

In this study, I analyzed riparian landcover classes and riparian forest structural properties 

based on airborne LiDAR data and high resolution multispectral data from the WorldView-2 satellite.  

Rather than employing a pixel-based classification approach, I used an object-oriented approach to 

segment the imagery into meaningful objects consisting of groups of pixels.  I developed 

classification and regression models to predict the features of interest across the entire study area 

using the Random Forest algorithm.  Analyzing the combined LiDAR and WV-2 spectral data 

improved the results for landcover classification but did not improve the results for riparian forest 

structural predictions.  Previous research suggests that each sensor can bring complementary and 

potentially synergistic capabilities to landcover classification and estimation of stand structure 

(Ackerman 1999; Lim et al. 2003; Anderson et al. 2008).  The 8-Band WV-2 image did not prove 

useful in mapping forest structure but was useful in mapping landcover types which vary more in the 

spectral domain compared to forest structure.  The results generated from the 8-Band WV-2 image 

were improved over the traditional 4-Band WV-2 image that is comparable to images from other high 

resolution sensors such as IKONOS and Quickbird. However, the results generated from the LiDAR 

only image were comparable to the spectral imagery at classifying forest classes and remarkably 

better at predicting forest structure data. The overall results indicate that classification of forested 

cover type and structural properties of riparian forest stands can be determined accurately for 

relatively large study areas with LiDAR-based approaches. LIDAR metrics alone explained a large 

percentage of the variance in many aspects of riparian forest structure (Table 14) and the predictive 

power of these models could likely be improved with additional ground data. The results show 

potential for increasing the efficiency of forest applications such as measuring forest structure, 

estimating forest inventory, and developing restoration scenarios.  Improving the training dataset to 

capture more of the variability across the riparian forested landscape and increasing the GPS 

locational accuracy could greatly improve these results. Overall, my study shows that LiDAR metrics 
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generated from LiDAR first returns data can effectively capture riparian forest stand metrics of 

interest across a varied riparian landscape.   

The availability of LiDAR data provides new opportunities to evaluate forest structure at the 

stand and landscape levels by providing managers with the equivalent area of hundreds or thousands 

of plots (Kane et al. 2010a).  The cost of LiDAR is relatively low compared to the cost of traditional 

field measurements on a per acre basis.  The cost of LiDAR is continuing to decrease while the point 

density has increased. A recent watershed-wide acquisition focused on the mainstem Nooksack River 

and Forks contained densities ≥8 pulses/m
2
 and cost $1.87/acre (WSS 2013).  The 8-Band WV-2 

imagery is cheaper than LiDAR at approximately $0.18/acre to $0.21/acre ($44/km
2
 – $52/km

2
) for 

orthorectified imagery.  However, LiDAR data provides more information on forest structure which 

the 8-Band WV-2 imagery alone is unable to provide.  LiDAR is also routinely purchased to 

generated bare earth models from the Last Return data points which increase the applications 

available from the LiDAR dataset alone. Purchasing spectral data alone would not meet the multi-

faceted needs of resource managers as ground elevation cannot be derived from spectral imagery. My 

results suggest that the added investment of acquiring satellite imagery in addition to LiDAR at a 

regional or watershed-wide level may not be necessary as riparian forest classes and forest structure 

can be generated as well and better in some cases from the LiDAR data.    

As LiDAR is becoming more widely available, having an accurate and efficient way to 

describe riparian forest structure is an important management tool.  This tool can be applied to 

examine the current habitat potential of the adjacent riparian forest as in the example in this study, or 

also to monitor change over time if repeat datasets are available, which is an important step for 

monitoring the effectiveness of riparian restoration. The LiDAR metrics Maximum height, 95
th
 % 

Height, and Mean height are the most effective at classifying riparian landcover and riparian forest 

structural attributes that are applicable to LWD recruitment and shade potential. These results suggest 

these three metrics can characterize both landcover classification and riparian forest structure.  

Combining the landcover classes conifer and deciduous with the forest structure metrics derived from 
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the RF regression models provides an important tool to analyze riparian function specific to LWD 

recruitment potential and shade potential.   Restoring functional riparian habitat is one of the long 

term goals for recovery of salmonid species in the Nooksack River Basin. Integrating the information 

from this analysis with current restoration strategies in the Nooksack River Basin provides valuable 

information about riparian forest condition and the potential to provide functional habitat.  
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8.0 Appendices 

Appendix A. Detailed LiDAR Data Flow Diagrams.  LiDAR Plot Processing 
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Appendix B.  Summary Statistics from all field plots (n = 63). Grey shading indicates plots in WV-2 study area (n=22).

Plot # 
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 SD 
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BA Plot 
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Density 

(trees/ha)

Density ≥ 

50 cm 

DBH 

(trees/ha)

BFW
5
 (m)

1 14.75 21.84 65 10.2 M
8 0.08 0.05 0.33 0.01 0.06 23.86 442.92 53.15 1.6

2 14.28 22.1 53.9 10.2 D
10 0.07 0.05 0.23 0.01 0.06 16.75 313.2 34.8 1.4

3 18.4 30.61 110.8 10.3 M 0.16 0.1 0.96 0.01 0.06 56.34 566.67 50 0.83

5 19.56 37.76 104.8 11.9 M 0.16 0.14 0.86 0.01 0.06 63.42 450 66.67 6.3

10 33.35 47.94 88 17 C
11 0.28 0.25 0.61 0.02 0.06 20.87 83.33 33.33 4

11 9.06 17.5 58.9 10 D 0.04 0.03 0.27 0.01 0.06 22.25 733.33 16.67 2.7

12 14.84 30.2 82.5 10.7 M 0.1 0.09 0.53 0.01 0.06 59 666.67 66.67 3.8

13 10.27 24.44 52 10.5 D 0.05 0.05 0.21 0.01 0.06 33.91 616.67 16.67 3.1

15 16.06 33.83 75.3 10 C 0.11 0.11 0.45 0.01 0.06 52.79 482.27 62.23 NA

17 18.03 27.08 75.6 10.8 C 0.12 0.08 0.45 0.01 0.07 31.49 383.57 46.03 NA

19 17.92 34.4 84.6 15.9 C 0.13 0.12 0.56 0.02 0.06 67.47 574.6 118.3 NA

20 13.59 33.37 63.1 12.3 C 0.08 0.1 0.31 0.01 0.07 38.63 381.07 45.73 NA

21 12.43 30.88 55.8 11.3 M 0.06 0.09 0.24 0.01 0.06 28.34 327.9 15.61 NA

22 11.65 28.02 53 12.3 M 0.06 0.07 0.22 0.01 0.06 25.61 356.5 15.5 8

23 11.44 29.11 62.7 11 D 0.06 0.08 0.31 0.01 0.06 46.76 610.8 33.93 NA

25 15.98 19.7 68.5 10 C 0.09 0.05 0.37 0.01 0.06 24.16 484.87 51.95 3.2

26 13 28.91 63.8 10.1 C 0.07 0.08 0.32 0.01 0.06 77.03 978.61 48.13 36

27 17.72 40.23 72.7 10.2 C 0.12 0.15 0.42 0.01 0.07 69.14 457.91 162.49 34

28 17.73 34.34 80.8 10.6 C 0.12 0.12 0.51 0.01 0.07 70.7 605.63 126.76 5.8

29 15.36 34.94 86.5 12.5 C 0.11 0.11 0.59 0.01 0.06 83.6 733.33 66.67 8.4

30 12.49 37.03 63.3 13.7 C 0.08 0.12 0.31 0.01 0.06 51.78 433.33 66.67 NA

35 27.37 46.9 110.2 13 M 0.26 0.23 0.95 0.01 0.06 56.91 250 83.33 13.8

36 32.92 43.64 116.4 13.4 C 0.33 0.23 1.06 0.01 0.06 72.91 316.67 100 11.7

37 23.03 39.35 69.1 10.1 D 0.14 0.16 0.38 0.01 0.06 29.23 183.33 66.67 10.6

38 2.94 12.21 21 10 D 0.01 0.01 0.03 0.01 0.05 3.46 280 0 6.9

39 26.72 53.24 90.5 27.5 M 0.25 0.27 0.64 0.06 0.03 63.17 233.33 100 7.2

40 4.92 17.55 23.7 10 D 0.01 0.03 0.04 0.01 0.01 23.94 923.08 0 7.7

41 14.16 22.37 74 10 M 0.09 0.05 0.43 0.01 0.06 35.2 644 48.3 25.2

42 15.73 30.18 74.5 11.2 M 0.1 0.09 0.44 0.01 0.07 33.29 369.23 46.15 38.6

43 10.43 29.66 60.2 13.2 C 0.06 0.08 0.28 0.01 0.06 56.27 726.63 16.51 21.2

44 10.79 27.69 51.7 10.7 M 0.05 0.07 0.21 0.01 0.07 54.99 795 30 13.5

45 12.91 23.93 72.5 10.9 C 0.08 0.06 0.41 0.01 0.03 72.14 1250 71.43 12.3

46 11.17 39.99 59.9 20.7 C 0.07 0.13 0.28 0.03 0.07 45.33 335.8 58.4 6.5

47 5.26 20.38 31.3 10.7 D 0.02 0.03 0.08 0.01 0.06 17.36 500 0 2.4

48 15.2 27.39 58.7 13 D 0.08 0.08 0.27 0.01 0.07 10.75 142.86 14.29 78

49 14.54 27.93 67.5 10.9 D 0.08 0.08 0.36 0.01 0.07 21.17 275.14 15.29 56

50 19.05 36.92 65.1 10 D 0.11 0.13 0.33 0.01 0.06 53.75 400 133.33 58

51 31.53 50.54 104.9 11.3 D 0.28 0.27 0.86 0.01 0.06 73.02 266.67 150 166

53 14.65 29.64 61.1 10 M 0.08 0.09 0.29 0.01 0.06 35.5 416.67 66.67 NA

54 10.63 26.2 47.8 10 M 0.05 0.06 0.18 0.01 0.06 41.71 666.67 0 NA

55 35.66 38.03 99.7 10.5 D 0.3 0.2 0.78 0.01 0.04 52.04 257.14 85.71 5.2

56 10.08 35.14 46.7 22.2 D 0.05 0.1 0.17 0.04 0.02 24.61 238.1 0 4.9

57 21.03 30.99 70 11.1 C 0.13 0.11 0.38 0.01 0.01 169.3 1600 400 10

58 35.51 47.07 116.9 24.5 D 0.4 0.26 1.07 0.05 0.01 128.27 500 83.33 6.3

59 13.34 50.37 61.3 35.5 M 0.1 0.21 0.3 0.1 0.02 41.71 200 133.33 7.6

60 11.65 25.06 61 10.2 M 0.06 0.06 0.29 0.01 0.06 47.14 788.9 32.2 51

61 16.03 28.38 83.2 11.7 M 0.12 0.08 0.54 0.01 0.06 47.37 571.69 33.63 54

62 19.2 27.39 101.2 10 C 0.14 0.09 0.8 0.01 0.07 62.79 719.32 88.08 38

63 25.32 34.78 142.4 12.4 M 0.3 0.14 1.59 0.01 0.05 77.49 540 60 13.3

64 16.83 38.08 75 12.5 M 0.11 0.14 0.44 0.01 0.06 94.93 700 183.33 8.4

65 20.21 36.84 80.5 10 M 0.13 0.14 0.51 0.01 0.06 84.97 616.67 133.33 11.6

66 9.36 26.04 41.8 11.7 D 0.04 0.06 0.14 0.01 0.07 23.96 400 0 38

67 14.21 28.78 65.1 10.4 M 0.08 0.08 0.33 0.01 0.07 40.84 507.69 46.15 42

68 33.13 38.22 141 12 D 0.38 0.2 1.56 0.01 0.06 55.5 283.33 33.33 29

69 43.7 42.33 213.5 10.3 M 0.7 0.29 3.58 0.01 0.06 125.68 440.4 125.83 41

70 11.39 22.67 65.3 11.1 D 0.06 0.05 0.33 0.01 0.06 21.74 433.33 16.67 41

71 5.01 19.95 37.4 11 M 0.02 0.03 0.11 0.01 0.06 33.21 1000 0 10

72 8.21 19.67 51.3 10 D 0.04 0.04 0.21 0.01 0.06 22.5 633.33 16.67 48

73 13.42 23.16 52.8 10.3 D 0.06 0.06 0.22 0.01 0.06 23.22 416.67 33.33 1.45

74 22.11 32.85 72.2 11.9 M 0.14 0.12 0.41 0.01 0.06 26.04 216.67 50 3

75 44.09 69.49 153.2 12.5 M 0.59 0.52 1.84 0.01 0.09 89.44 171.2 96.3 62

76 29.3 31.3 151.3 10.2 M 0.33 0.14 1.8 0.01 0.09 65.29 457.38 65.34 50

78 3.65 14.46 21.3 10.1 D 0.01 0.02 0.04 0.01 0.06 8.13 466.67 0 139

7
 Min PFD - Minimum pool forming diameter - (Bankfull width x 0.025) x 100  (Hyatt et al. 2004; Beechie et al. 2000) 

4
 BA - Basal area

11
 D - Deciduous dominated forest

5
 BFW- Bankfull width

12
 SF - South Fork

6
 RM - River Mile

13
 MS - Mainstem

1
 DBH - Diameter at breast height

8
 C - Conifer dominated forest

2
 SD - Standard deviation

9
 UN - Unnamed

3
 Dom - Dominance - Defined as  C ≥ 75% Conifer Species, D ≥ 75% Deciduous Species, M - Mixed neither Conifer or Deciduous dominant.

10 
M - Mixed forest

87.12 304.92 13.6 125 SF Nooksack River

0 466.67 9.6 347.5 SF Nooksack River

33.33 133.33 4.6 7.5 UN tributary

42.8 32.1 13.48 155 SF Nooksack River

33.33 583.33 24.25 120 UN tributary

83.33 300 12 3.63 Nessett Creek

50 366.67 22.35 102.5 SF Nooksack River

16.67 983.33 24.2 25 SF Nooksack River

100 150 22.3 72.5 SF Nooksack River

47.19 267.39 22.35 102.5 SF Nooksack River

142.86 257.14 30.05 95 SF Nooksack River

153.85 307.69 30.07 105 SF Nooksack River

283.33 233.33 NA 21 SF Anderson Creek

250 233.33 NA 29 SF Anderson Creek

132.12 499.12 13.1 95 SF Nooksack River

240 240 NA 33.25 SF Anderson Creek

161 595.7 13 127.5 SF Nooksack River

134.51 403.54 13 135 SF Nooksack River

166.67 250 29.8 15.75 Smith Creek

66.67 0 29.8 19 Smith Creek

142.86 95.24 1 12.25 Silver Creek

400 800 29.8 25 Smith Creek

216.67 450 NA NA UN tributary

0 171.43 1 13 Silver Creek

33.33 83.33 26.8 415 MS
13

 Nooksack

100 250 NA NA UN tributary

107 152.86 0.75 140 SF Nooksack River

100 166.67 0.8 145 SF Nooksack River

15.63 484.38 14.3 6 UN tributary

42.86 85.71 0.7 195 SF Nooksack River

107.14 1071.43 14.3 30.75 Arlecho Creek

189.8 87.6 14.3 16.25 UN tributary

297.26 412.86 14.3 53 Skookum Creek

315 450 14.3 33.75 Arlecho Creek

32.2 563.5 14.3 63 Skookum Creek

92.31 230.77 14.3 96.5 Skookum Creek

66.67 66.67 27.2 18 Anderson Creek

0 923.08 27.2 19.25 Anderson Creek

50 66.67 10.25 26.5 Hutchinson Creek

0 280 27.2 17.25 Anderson Creek

133.33 33.33 10.25 34.5 Hutchinson Creek

66.67 150 10.25 29.25 Hutchinson Creek

416.67 250 15.25 21 Edfro Creek

266.67 100 15.25 NA Edfro Creek

147.71 147.71 15.75 85 SF Nooksack River

197.18 281.69 15.25 14.5 Edfro Creek

34.63 398.28 4.6 8 UN tributary

417.11 513.37 15.85 90 SF
12

 Nooksack River

93 248 20.1 20 Deer Creek

254.5 322.37 4.6 NA UN tributary

182.91 152.43 20.1 NA Deer Creek

156.14 156.14 20.1 NA Deer Creek

76.71 260.83 16.5 NA Cavanaugh Creek

135.2 321.1 16.5 NA Cavanaugh Creek

133.33 466.67 NA 7.75 UN tributary

155.57 264.47 16.5 NA Cavanaugh Creek

33.33 683.33 1.95 6.75 Black Slough

200 400 NA 9.5 UN tributary

216.67 166.67 NA 15.75 UN tributary

16.67 33.33 1.95 10 Black Slough

34.8 243.6 NA 3.5 UN tributary

216.67 300 NA 2.08 UN tributary

Density ≥ 30 cm < 50 

cm DBH (trees/ha)

Density ≥ 10 cm < 30 

cm DBH (trees/ha)
RM

6 Min PFD
7 

(cm)
Stream Name

0 389.77 NA 4 UN
9
 tributary
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Appendix B continued.  Summary Statistics from all field plots (n = 63). Grey shading indicates plots in WV-2 study area (n=22).

Plot # 

Point 

Density (first 

returns/m
2
)

First 

Return 

Count

Minimum 

Height(ft)

Maximum 

Height (ft)

Mean 

Height (ft)

SD Height 

(ft)
CV Height

95
th

 % 

Height (ft)

Percent first 

returns 

above 10 ft

Percent all 

returns 

above 10 ft

Percent 

first 

returns 

above 

mean

Rumple 

Index

Corner 1 

Northing

Corner 1 

Easting

Corner 2 

Northing

Corner 2 

Easting

Corner 3 

Northing

Corner 3 

Easting

Corner 4 

Northing

Corner 4 

Easting

1 2.04 1151 0.04 82.27 25.5 18.58 0.73 60.24 74.11 67.87 44.74 2.33 5400684.89 545164.25 5400676.23 5400676.23 5400714.89 545213.14 5400706.23 545218.14

2 2.23 1280 0.05 105.05 37.6 28.29 0.75 96.97 86.09 70.85 32.81 2.6 5400858.12 545172.64 5400866.78 545167.64 5400828.12 545122.87 5400836.78 545117.87

3 5.18 3110 0.57 127.66 86.4 16.28 0.19 115.19 99.68 90.84 46.98 2.5 5401569.19 545123.02 5401561.52 545116.59 5401607.75 545077.14 5401600.09 545070.72

5 2.26 1357 2.76 114.31 81.21 19.24 0.24 102.69 99.41 94.01 63.6 2.09 5401429.64 545182.80 5401421.55 545188.68 5401464.91 545231.10 5401456.82 545236.98

10 0.97 584 0 60.58 4.23 8.72 2.06 24.02 9.42 8.77 19.18 1.69 5398976.06 559864.25 5398972.97 559873.76 5399033.13 559882.80 5399030.04 559892.31

11 0.91 546 0.02 84.28 48.26 19.07 0.4 77.34 91.94 86.26 55.86 2.7 5398766.37 559978.16 5398765.68 559988.13 5398706.52 559973.97 5398705.82 559983.95

12 2.76 1655 0.07 105.58 62.29 17.48 0.28 85.33 96.92 84.11 58.43 2.13 5423560.69 520769.15 5423551.30 520765.73 5423581.21 520712.82 5423571.82 520709.40

13 2.63 1576 0 95.12 60.74 18.09 0.3 85.02 95.3 71.1 67.45 1.88 5423646.40 520726.90 5423651.40 520718.24 5423698.36 520756.87 5423703.36 520748.21

15 0.98 627 0.02 190.31 107.46 50.54 0.47 169.92 87.24 83.04 64.75 6.47 5387774.33 568180.71 5387780.76 568173.05 5387809.33 568236.38 5387815.76 568228.71

17 0.95 621 0.01 169.86 114.9 30.95 0.27 150.99 98.23 94.42 62.48 4.19 5387905.54 568278.39 5387907.28 568268.54 5387844.92 568245.80 5387846.66 568235.96

19 3.43 2027 0 172.21 86.12 45.64 0.53 145.53 87.27 82.5 60.09 4.74 5387795.49 568333.34 5387797.23 568343.18 5387864.43 568323.06 5387866.17 568332.91

20 1.34 882 0 114.24 57.35 26.86 0.47 91.21 90.02 85.67 62.24 4.37 5383755.03 566948.55 5383753.29 566958.39 5383823.96 566959.94 5383822.23 566969.79

21 1.11 708 0.02 117.86 53.85 40.39 0.75 103.6 75.14 69.27 53.25 3.25 5383704.19 566992.45 5383699.19 567001.11 5383643.57 566960.43 5383638.57 566969.09

22 1.22 785 0.02 124.67 66.28 30.24 0.46 103.99 88.92 86.46 59.49 3.89 5383670.14 567084.53 5383675.14 567075.87 5383730.76 567116.79 5383735.76 567108.13

23 1.3 764 0.02 101.32 69.04 25.38 0.37 95.31 96.73 92.91 62.96 2.22 5390651.92 564051.20 5390650.18 564041.36 5390711.01 564040.97 5390709.27 564031.12

25 1.25 720 0 91.47 14.45 19.28 1.33 61.04 39.72 39.44 24.31 2.15 5390691.63 564147.69 5390701.03 564151.11 5390671.11 564201.96 5390680.51 564205.38

26 1.41 881 0.15 140.15 94.11 25.62 0.27 123.72 98.3 95.96 63.11 3.29 5389162.56 564498.80 5389171.39 564503.49 5389195.42 564443.76 5389204.25 564448.46

27 0.8 540 0.01 166.44 104.7 25.41 0.24 137.58 97.22 95 56.3 4 5389304.72 564572.83 5389295.32 564569.41 5389328.66 564509.22 5389319.26 564505.80

28 1.25 886 0.15 153.18 109.45 28.56 0.26 141.37 97.86 90.97 62.19 4.45 5390821.13 565787.84 5390813.47 565781.41 5390775.50 565842.01 5390767.84 565835.58

29 0.99 592 17.88 155.32 109.91 19.18 0.17 139.58 100 98.38 42.4 2.52 5390919.45 565807.42 5390922.87 565816.82 5390863.07 565827.94 5390866.49 565837.34

30 1.02 610 0.04 163.5 98.83 33.39 0.34 146.91 94.1 90.51 60.98 4.6 5390816.37 565933.51 5390809.94 565925.85 5390862.33 565895.06 5390855.90 565887.40

35 0.87 523 0 157.36 58.12 44.8 0.77 136.1 78.97 73.13 44.93 6.08 5396856.68 562106.66 5396863.62 562099.46 5396813.52 562065.14 5396820.46 562057.95

36 0.83 500 0.01 139.39 62.1 35.42 0.57 108.74 85.6 83.5 54.6 4.25 5396781.71 562016.14 5396787.01 562024.62 5396832.59 561984.41 5396837.89 561992.89

37 1 601 0.05 150.46 88.78 40.02 0.45 131.6 92.18 87.45 67.22 3.79 5396745.78 562009.14 5396755.39 562011.90 5396729.24 562066.70 5396738.85 562069.46

38 0.54 270 0 63.1 9.75 16.62 1.71 45.15 26.3 27.59 26.3 1.98 5409061.74 548501.83 5409060.00 548511.67 5409110.98 548510.50 5409109.24 548520.35

39 0.59 176 0 118.66 66.16 30.76 0.46 103.4 88.07 77.84 52.84 4.24 5409180.03 548487.26 5409171.37 548492.26 5409165.03 548461.31 5409156.37 548466.31

40 0.68 89 0.15 95.22 49.77 29.85 0.6 91.23 85.39 74.29 55.06 4.36 5409215.02 548438.57 5409205.62 548441.99 5409219.60 548450.75 5409210.21 548454.17

41 0.99 615 0.05 126.93 54.78 26.28 0.48 101.95 95.45 91.22 45.04 3.87 5393096.55 565628.18 5393097.25 565618.21 5393166.38 565632.52 5393167.08 565622.54

42 1.4 911 0.01 129.49 58.08 28.4 0.49 99.79 89.35 82.96 59.28 3.44 5393072.07 565558.12 5393063.40 565553.12 5393104.57 565502.38 5393095.90 565497.38

43 1.62 979 0.27 126.03 92.53 16.31 0.18 112.28 99.28 95.27 54.24 2.11 5392876.34 565539.71 5392881.34 565548.37 5392936.96 565509.43 5392941.96 565518.09

44 1.06 707 0.03 109.24 75.86 20.43 0.27 95.19 95.47 86.26 67.75 2.12 5393144.91 569175.56 5393151.33 569167.90 5393198.53 569218.42 5393204.96 569210.76

45 1.15 321 0.05 113.26 77.24 15.62 0.2 94.58 98.44 94.96 55.76 2.15 5393233.02 569068.84 5393233.02 569058.84 5393261.02 569068.84 5393261.02 569058.84

46 1.56 1069 0 123.21 82.58 23.14 0.28 111 96.35 93.54 57.34 3.55 5394529.29 565591.18 5394521.63 565584.75 5394484.29 565643.65 5394476.63 565637.22

47 1.28 818 0.08 106.53 46.77 19 0.41 83.52 96.94 90.55 45.6 2.04 5394474.46 565534.11 5394464.61 565535.85 5394463.35 565471.52 5394453.50 565473.26

48 1.15 804 0.07 106.58 57.24 26.69 0.47 92.1 93.53 91.3 61.07 3.52 5405621.99 558481.96 5405631.39 558485.38 5405655.33 558420.26 5405645.93 558416.84

49 1.53 1000 0.13 108.06 70.03 26.78 0.38 96.28 91.3 88.48 69.7 3.39 5405525.14 558440.81 5405534.54 558444.23 5405558.48 558382.75 5405549.08 558379.33

50 1.2 717 0 140.46 80.62 46.56 0.58 131.99 85.08 82.12 59.69 5.91 5405422.44 558500.10 5405432.28 558501.84 5405412.02 558558.95 5405421.87 558560.69

51 0.77 464 0.64 155.28 110.61 38.89 0.35 149.4 94.4 87.49 63.36 5.69 5414436.12 548487.25 5414427.24 548493.30 5414409.12 548433.85 5414399.88 548439.77

53 1.93 1158 0.01 119.18 56.22 27.98 0.5 99.34 88.6 68.18 58.12 2.73 5421136.79 519295.12 5421136.79 519305.12 5421076.79 519295.12 5421076.79 519305.12

54 0.26 157 1.62 110.71 92.12 17.46 0.19 109.27 99.36 87.82 66.88 3.84 5421115.53 519366.63 5421115.53 519376.63 5421055.53 519366.63 5421055.53 519376.63

55 0.63 222 0 102.54 44.25 29 0.66 94.32 83.33 69.97 48.2 3.99 5406739.70 534883.41 5406741.43 534893.26 5406774.17 534877.37 5406775.90 534887.22

56 0.62 131 0.86 73.93 29.73 21.1 0.71 65.25 74.81 66.51 45.8 3.8 5406705.30 534963.39 5406697.64 534969.82 5406718.80 534979.29 5406711.14 534985.72

57 1.24 62 1.76 62.95 40.6 18.01 0.44 62.49 95.16 93.6 54.84 3.44 5410659.87 552781.21 5410654.87 552789.87 5410655.53 552778.77 5410650.53 552787.43

58 1.44 173 0.28 117.36 94.92 25.72 0.27 114.7 98.27 97.99 66.47 2.41 5410729.31 552729.04 5410731.05 552719.19 5410741.13 552731.63 5410742.86 552721.78

59 1.18 177 0.71 112.74 51.55 31.07 0.6 108.21 89.27 88.39 40.11 4.51 5410730.78 552644.79 5410727.36 552654.19 5410716.69 552640.71 5410713.27 552650.11

60 1.12 697 0.2 120.93 57.66 28.21 0.49 96.27 94.4 91.11 47.49 2.54 5391872.04 561507.24 5391867.04 561515.90 5391811.41 561476.18 5391806.41 561484.84

61 1.13 671 0.03 113.78 53.43 27.34 0.51 96.51 96.72 92.17 41.88 2.65 5391867.04 561515.90 5391862.04 561524.56 5391806.41 561486.16 5391801.41 561494.82

62 1.35 920 0 128.08 58.1 35.59 0.61 112.08 83.8 79.71 55.22 4.17 5391796.66 561630.10 5391801.81 561621.53 5391732.37 561595.02 5391737.52 561586.45

63 3.41 1704 1.41 149.69 100.91 32.66 0.32 138.82 99.59 91.81 54.4 3.32 5404024.41 549357.49 5404032.07 549351.07 5404056.55 549395.45 5404064.21 549389.03

64 1.94 1163 13.25 142.99 93.52 18.26 0.2 129.66 100 97.96 43.16 2.6 5403983.54 549345.85 5403993.39 549344.11 5403993.96 549404.35 5404003.80 549402.62

65 1.05 631 0.05 127.55 77.67 21.31 0.27 103.98 97.62 94.82 72.42 2.27 5403893.91 549381.77 5403903.75 549383.51 5403883.49 549440.27 5403893.34 549442.01

66 0.97 678 0.02 102.57 70.39 30.49 0.43 97.51 90.71 76.37 66.96 1.88 5384191.20 579655.32 5384188.61 579645.66 5384123.58 579673.31 5384121.00 579663.65

67 0.97 632 0 132.95 72.52 32.05 0.44 114.64 91.77 84.97 57.75 4.3 5384188.99 579733.85 5384188.29 579743.82 5384124.15 579729.34 5384123.45 579739.31

68 0.97 581 0.15 150.15 75.22 35.68 0.47 131.93 88.81 82.43 60.07 3.86 5383540.19 569360.46 5383541.92 569370.31 5383599.27 569350.12 5383601.01 569359.97

69 0.8 507 0.08 190.25 75.79 35.89 0.47 159.31 97.63 95.59 36.88 4.16 5383537.95 569473.56 5383537.95 569463.56 5383601.53 569473.56 5383601.53 569463.56

70 1.26 755 0.07 108.68 40.62 19.32 0.48 69.89 95.89 91.92 53.77 2.63 5383505.28 569451.12 5383504.93 569461.11 5383445.32 569449.03 5383444.97 569459.03

71 0.97 581 0.28 76.07 61.11 8.91 0.15 72.29 99.48 96.24 50.6 1.71 5383170.47 571847.73 5383180.32 571845.99 5383180.89 571906.58 5383190.74 571904.85

72 1.4 838 0.25 68.81 42.04 16.47 0.39 63.26 93.79 86.86 57.64 2.3 5383386.15 571824.04 5383384.41 571814.19 5383327.06 571834.42 5383325.33 571824.57

73 1.47 883 0.18 108.29 43.93 22.24 0.51 86.39 99.43 98.85 44.85 3.69 5393285.93 562425.92 5393292.36 562418.26 5393331.89 562464.30 5393338.32 562456.63

74 1.18 710 0.07 120.07 47.37 31.94 0.67 92.92 81.55 78.22 50.14 3.36 5390640.61 564106.26 5390637.19 564115.66 5390584.23 564085.84 5390580.81 564095.24

75 1.6 1498 0.01 160.98 62.1 42.24 0.68 123.83 81.04 76.43 55.41 4.39 5391506.66 562091.90 5391501.66 562100.56 5391593.27 562138.63 5391588.27 562147.29

76 1.28 1174 0 160.99 77.92 40.67 0.52 141.29 94.29 92.22 55.11 3.77 5391418.16 562257.60 5391410.75 562263.41 5391354.01 562194.44 5391348.07 562202.40

78 1.18 707 0.01 44.94 20.06 9.15 0.46 34.01 86.85 83.97 53.04 2.12 5395464.44 559941.48 5395467.86 559932.08 5395408.06 559920.95 5395411.48 559911.56
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